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What is ChemistryWhat is Chemistry

The branch of natural science that 
deals with composition, structure, 
properties of substances and the 
changes they undergo.



Types of substancesTypes of substances

Atoms
Molecules

Clusters
Congeries

Nano materials

Bulk materials

Geometric Structure

Size
makes the difference

Electronic Structure

Structure determines properties
Properties reflects structures

Structure vs. PropertiesStructure vs. Properties



Structural ChemistryStructural Chemistry

Inorganic Chemistry
Organic Chemistry
Catalysis
Electrochemistry
Bio-chemistry
etc.

Material Science
Surface Science
Life Science
Energy Science
Environmental Science
etc. 

Role of Structural Chemistry Role of Structural Chemistry 
in Surface Sciencein Surface Science



fcc(100) fcc(111)

fcc(775) fcc(10 8 7)

Surface structures of Pt single crystal

(111)

(775)

(100)

(10 8 7)

Different surfaces do different chemistry
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25

Surface Structure vs. Catalytic Activity

N2 + 3H2 ⎯→ 2NH3

Fe single crystal，
20atm/700K

Role of Structural Chemistry Role of Structural Chemistry 
in Material Sciencein Material Science



Graphite & Diamond Structures
Diamond: Insulator or wide bandgap 

semiconductor: →→→ →→→
Graphite: Planar structure: →→→
sp2 bonding ≈ 2d metal (in plane)

Other Carbon Crystal Structures
“Buckyballs” (C60)      →→→→→→
“Buckytubes” (nanotubes), 
other fullerenes   →→→

C Crystal StructuresC Crystal Structures

Structure makes the difference

Zheng LS (郑兰荪), et al.
Capturing the labile fullerene[50] as C50Cl10
SCIENCE 304 (5671): 699-699 APR 30 2004 



Role of Structural Chemistry Role of Structural Chemistry 
in Life Sciencein Life Science

What do proteins do ?
Proteins are the basis of how biology gets things 

done.

• As enzymes, they are the driving force behind 
all of the biochemical reactions which makes 
biology work. 

• As structural elements, they are the main 
constituents of our bones, muscles, hair, skin 
and blood vessels.

• As antibodies, they recognize invading 
elements and allow the immune system to get 
rid of the unwanted invaders.



What are proteins made of ?

• Proteins are necklaces of amino acids, i.e. long chain 
molecules. 

Objective of Structural ChemistryObjective of Structural Chemistry

1) Determining the structure of a 
known substance

2) Understanding the structure-
property relationship

3) Predicting a substance with 
specific structure and property



Chapter 1 The basic knowledge of quantum mechanics
Chapter 2     Atomic structure
Chapter 3     Symmetry
Chapter 4     Diatomic molecules
Chapter 5/6 Polyatomic structures
Chapter 7     Basics of Crystallography
Chapter 8   Metals and Alloys
Chapter 9     Ionic compounds 

OutlineOutline

Chapter 1 The basic knowledge of 
quantum mechanics



1.1 The failures of classical physics

• Classical physics: (prior to 1900)

Newtonian classical mechanics
Maxell’s theory of electromagnetic waves
Thermodynamics and statistical physics

1.1.1  Black-body radiation



It can not be explained by classical thermodynamics and 
statistical mechanics.

Black-Body Radiation

Classical solution:

Rayleigh-Jeans Law

(high energy, Low T)

Wien   Approximation

(long wave length)



1.1.2 The photoelectric effect



The photoelectric effect



The Photoelectric Effect

1. The kinetic energy of the ejected electrons depends 
linearly on the frequency of the light.
2. There is a particular threshold frequency for each metal. 
3. The increase of the intensity of the light results in the 
increase of the number of photoelectrons.

Classical physics: The energy of light wave should be directly 
proportional to intensity and not be affected by frequency.



Explaining the Photoelectric 
Effect

• Albert Einstein

– Proposed a corpuscular theory of light (photons). 

– won the Nobel prize in 1921

1. Light consists of a stream of photons. The energy of a 
photon is proportional to its frequency. 

ε = hν h = Planck’s constant

2. A photon has energy as well as mass. m= hν /c2

3. A photon has a definite momentum. p=mc= hν /c=h/λ

4. The intensity of light depends on the photon density

Therefore, the photon’s energy is equaled to the 
electron’s kinetic energy added to the electron’s 
binding energy 

• Ephoton = E binding + E Kinetic energy

• hν=W+Ek

Explaining the Photoelectric 
Effect



Example I:  Calculation Energy from Frequency

Problem:  What is the energy of a photon of electromagnetic radiation 
emitted by an FM radio station at 97.3 x 108 cycles/sec?
What is the energy of a gamma ray emitted by Cs137 if it has a frequency
of 1.60 x 1020/s?

Ephoton =hν = (6.626 x 10 -34Js)(9.73 x 109/s) = 6.447098 x 10 -24J

Ephoton = 6.45 x 10 - 24 J

Egamma ray =hν = ( 6.626 x 10-34Js )( 1.60 x 1020/s ) = 1.06 x 10 -13J

Egamma ray = 1.06 x 10 - 13J

Solution:

Plan: Use the relationship between energy and frequency to obtain 
the energy of the electromagnetic radiation (E = hν).

Example II: Calculation of Energy from Wavelength

Problem: What is the photon energy of of electromagnetic radiation
that is used in microwave ovens for cooking, if the wavelength of the
radiation is 122 mm ?

wavelength = 122 mm = 1.22 x 10 -1m

frequency =                        =                            = 2.46 x 1010 /s3.00 x108 m/s
1.22 x 10 -1m

c
wavelength

Energy = E = hν = (6.626 x 10 -34Js)(2.46 x 1010/s) = 1.63 x 10 - 23 J

Plan: Convert the wavelength into meters, then the frequency can be
calculated using the relationship;wavelength x frequency = c (where c
is the speed of light), then using E=hν to calculate the energy.
Solution: 



Example III: Photoelectric Effect 

• The energy to remove an electron from potassium 
metal is 3.7 x 10 -19J. Will photons of frequencies of 
4.3 x 1014/s (red light) and 7.5 x 1014 /s (blue light) 
trigger the photoelectric effect?

• E red = hν = (6.626 x10 - 34Js)(4.3 x1014 /s)
E red = 2.8 x 10 - 19 J

• E blue = hν = (6.626 x10 - 34Js)(7.5x1014 /s)
E blue = 5.0 x 10 - 19 J

• The binding energy of potassium is   =   3.7 x 10 - 19 J    

• The red light will not have enough energy to knock an 
electron out of the potassium, but the blue light will eject 
an electron !

• E Total = E Binding Energy + EKinetic Energy of Electron

• E Electron = ETotal - E Binding Energy

• E Electron = 5.0 x 10 - 19J   - 3.7 x 10 - 19 J

= 1.3 x 10 - 19Joules



1.1.3 Atomic and molecular spetra

The Line Spectra of Several Elements



• The electron are like planets --- orbit the nucleus

• Light of energy E given off when electrons change 
orbits (i.e., different energies)

Why do the electrons not fall into 
the nucleus?

Why only discrete energies? 

Planetary model:



The Energy States of the Hydrogen Atom

Bohr derived the energy for a system consisting of a nucleus plus 
a single electron

eg.

He predicted a set of quantized energy levels given by :

- R is called the Rydberg constant (2.18 x 10-18 J)
- n is a quantum number
- Z is the nuclear charge

n = 1,2,3.. .En = −
RZ 2

n2

H He+ Li2 +



Problem: Find the energy change when an electron changes from the
n=4 level to the n=2 level in the hydrogen atom? What is the wavelength
of this photon?

Plan: Use the Rydberg equation to calculate the energy change, then 
calculate the wavelength using the relationship of the speed of light.
Solution:

Ephoton = -2.18 x10 -18J           - = 1
n1

2
1
n2

2

Ephoton = -2.18 x 10 -18J            - = - 4.09 x 10 -19J1
2 2

1
4 2

λ =             =                                                
h x c

E
(6.626 x 10 -34Js)( 3.00 x 108 m/s)

4.09 x 10 -19J
= 4.87 x 10 -7 m = 487 nm

Black-Body Radiation

Lesson 1    Summary

1.1 The failures of classical physics

The photoelectric effect
A corpuscular theory of light (photons)
ε = hν h = Planck’s constant
p=h/λ

Atomic and molecular spetra



1.2 The characteristic of the 
motion of microscopic particles

1.2.1 The wave-particle duality of 
microscopic particles

In 1924 de Beoglie suggested that microscopic 
particles might have wave properties.



Different Behaviors of Waves and Particles

Si Crystal

Electron beam (50eV)

The diffraction of electrons

STM image of Si(111) 7x7 surface



Spatial image of the confined electron states of a quantum corral. 
The corral was built by arranging 48 Fe atoms on the Cu(111) 
surface by means of the STM tip. Rep. Prog. Phys. 59(1996) 1737

Electron as waves

De Broglie considered that the wave-particle 
relationship in light is also applicable to particles of 
matter, i.e. 

The wavelength of a particle could be determined by

λ= h/p = h/mv

E=hν

p=h/λ

h = Planck’s constant, 

p = particle momentum, 

 λ = de Broglie wavelength



de Broglie Wavelength

Example: Calculate the de Broglie wavelength of an 
electron with speed 3.00 x 106 m/s.

electron mass = 9.11 x 10 -31 kg

velocity = 3.00 x 106 m/s

λ =             =                                                
h

mv
6.626 x 10 - 34Js

( 9.11 x 10 - 31kg )( 1.00 x 106 m/s )

Wavelength     λ = 2.42 x 10 -10 m = 0.242 nm

J = kg m2

s2
hence

The moving speed of an electron is determined by the 
potential difference of the electric field (V)

eVm =2v
2

1

If the unit of V is volt, then the wavelength is:
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1eV=1.602x10-19 J



The de Broglie Wavelengths 
of Several particles

Particles           Mass (g)         Speed (m/s)           λ (m)

Slow electron        9 x 10 - 28 1.0                        7 x 10 - 4

Fast electron         9 x 10 - 28 5.9 x 106 1 x 10 -10

Alpha particle      6.6 x 10 - 24 1.5 x 107 7 x 10 -15

One-gram mass     1.0                           0.01                7 x 10 - 29

Baseball                142                          25.0       2 x 10 - 34

Earth                     6.0 x 1027 3.0 x 104 4 x 10 - 63

• Wave (i.e., light)

- can be wave-like (diffraction)

- can be particle-like  (p=h/λ)

• Particles

- can be wave-like (λ =h/p)

- can be particle-like  (classical)

The wave-particle duality



For photon: 

p=mc,   

E=hν=h (c/λ) = pc = mc2

Discussions:

For particles: 

p=mv,   

E=(1/2) mv2 = p2/2m=pv/2

E=h ν

p = h/λ

λ = u / ν … u is not the moving 
speed of particles.

≠ p2/2m =(1/2) mv2 

≠ pv

1.2.2 The uncertainty principle
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Measurement

•Classical: the error in the measurement depends 
on the precision of the apparatus, could be 
arbitrarily small.

•Quantum: it is physically impossible to 
measure simultaneously the exact position and 
the exact velocity of a particle.

Example
The speed of an electron is measured to be 1000 m/s to 
an accuracy of 0.001%. Find the uncertainty in the 
position of this electron.

The momentum is

p  =  mv = (9.11 x 10-31 kg) (1 x 103 m/s) 

= 9.11 x 10-28 kg.m/s

Δp = p x 0.001% = 9.11 x 10-33 kg m/s

Δx = h / Δp = 6.626 x 10-34 / (9.11 x 10-33 )

= 7.27 x 10-2 (m)



Example
The speed of a bullet of mass of 0.01 kg is measured to 

be 1000 m/s to an accuracy of 0.001%. Find the 
uncertainty in the position of this bullet.

The momentum is

p  =  mv = (0.01 kg) (1 x 103 m/s)  = 10 kg.m/s

Δp = p x 0.001% = 1 x 10-4 kg m/s

Δx = h / Δp = 6.626 x 10-34 / (1 x 10-4 )

= 6.626 x 10-30 (m)

Example
The average time that an electron exists in an excited 

state is 10-8 s. What is the minimum uncertainty in 
energy of that state?

h     ≥ΔΔ tE

eV 100.66           

eV 
106.1

1006.1
 J 10 x 1.06            

s 10Js/  10 x 1.06 /    
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×
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CLASSICAL vs QUANTUM MECHANICS

Macroscopic matter - Matter is particulate, energy varies continuously.
The motion of a group of particles can be predicted knowing their 
positions, their velocities and the forces acting between them.

Microscopic particles - microscopic particles such as electrons exhibit
a wave-particle “duality”, showing both particle-like and wave-like 
characteristics. The energy level is discrete. …

The description of the behavior of electrons in atoms requires 
a completely new “quantum theory”.

What is Quantum Mechanics?

QM is the theory of the behavior of very small objects (e.g. 
molecules, atoms, nuclei, elementary particles, quantum fields, 
etc.)

One of the essential differences between classical and quantum 
mechanics is that physical variables that can take on continuous
values in classical mechanics (e.g. energy, angular momentum)  
can only take on discrete (or quantized) values in quantum 
mechanics (e.g. the energy levels of electrons in atoms, or the 
spins of elementary particles, etc).



Lesson 2    Summary

• Wave (i.e., light)

- can be wave-like (diffraction)

- can be particle-like  (p=h/λ)

• Particles

- can be wave-like (λ =h/p)

- can be particle-like  (classical)

The wave-particle duality

The uncertainty principle

1.3 The basic assumptions 
(postulates) of quantum mechanics



Postulate 1.  The state of a system is 
described by a wave function of the 
coordinates and the time.

In CM (classical mechanics), the state of a system of N particles
is specified totally by giving 3N spatial coordinates (Xi, Yi, Zi)
and 3N velocity coordinates (Vxi, Vyi, Vzi).

In QM, the wave function takes the form ψ(r, t) that depends on
the coordinates of the particle and on the time. 

))(/2exp[( EtxphiA x −= πψ

The wavefunction Ψ for a  single particle of 1-D motion is:

For example:

)/(2exp[ vtxiA −= λπψ
The wavefunction of plane monochromatic light:



A wave function must satisfy 3 mathematical conditions:

1. Single-value
2. Continuous
3. Quadratically integrable.

dxdydztrtr ),(),(* ψψ The probability that the particle 
lies in the volume element
dxdydz, located at r, at time t.

The probability

1   ),(),(* =∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

dxdydztrtr ψψ

To be generally normalized

Postulate 2.  For every observable mechanical 
quantity of a microscopic system, there is a 
corresponding linear Hermitian operator 
associated with it.

To find this operator, write down the classical-mechanical 
expression for the observable in terms of Cartesian coordinates 
and corresponding linear-momentum, and then replace each 
corrdinate x by the operator, and each momentum component px

by the operator –iћ∂/∂x.



An operator is a rule that transforms a given function 
into another function.      E.g. d/dx, sin, log

Ĉ)B̂Â()ĈB̂(Â =

Operators obey the associative law of multiplication:

d/dxD̂ = 5)( 3 −= xxf
23 3)'5()(ˆ xxxfD =−=

f(x)B̂f(x)Â)f(x)B̂Â( +≡+

f(x)B̂f(x)Â)f(x)B̂Â( −≡−

f(x)]B̂[Âf(x)B̂Â ≡

• A linear operator means

• A Hermitian operator means

*
111

*
1 )ψÂ(ψψÂψ ∫∫ = *

122
*
1 )ψÂ(ψψÂψ ∫∫ =

*  A  Hermitian operator ensures that the eigenvalue of the 
operator is a real number

2121 ψÂψÂ)ψ(ψÂ +=+

ψÂcψÂ c=



Eigenfunctions and Eigenvalues

Suppose that the effect of operating on some function f(x)
with the operator Â is simply to multiply f(x) by a certain 
constant k. We then say that f(x) is an eigenfunction of Â
with eigenvalue k.

kf(x)f(x) ≡Â

2x2x 2e(d/dx)e =

Eigen is a German word meaning characteristic.

Examples
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To every physical observable there corresponds 
a linear Hermitian operator. To find this 
operator, write down the classical-mechanical 
expression for the observable in terms of 
Cartesian coordinates and corresponding linear-
momentum components, and then replace each 
coordinate x by the operator x. and each 
momentum component px by the operator -
iћ∂/∂x.

Mechanical quantities and their Operators

Position                   x

Momentum (x)        px

Angular 
Momentum (z)       Mz=xpy-ypx

Kinetic Energy T=p2/2m

Potential Energy     V

Total Energy           E =T+V

Some Mechanical quantities and their Operators

Mechanical quantities                   Methematical Operator
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If a system is in a state described by a normalized wave 
function ψ, then the average value of the observable 
corresponding to A is given by –

τdAa ΨΨ= ∫
∞

∞−
ˆ  *

The average value of the physical observable

Exercise :

Suppose a particle in a box is in a state -

Note that the wave function ψ(x) is not an eigenfunction for a 
particle in a box. Sketch ψ(x) vs. x and show that y(x) is
normalized. Calculate the average energy associated with this
state. (Assume V = 0).    
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Thus the only value we measure is the value an.

If the wave function is an eigenfunction of A, with eigenvalue an,

then the a measurement of the observable corresponding to A

will give the value an with certainty.

• When the two operators  commute, their 
corresponded mechanical quantities can be 
measured simultaneously. 

ˆ ˆ, 0F G FG GF⎡ ⎤ = − =⎣ ⎦
) )) )

Commuted operators



Postulate 3: The wave-function of a system 
evolves in time according to the time-
dependent Schrödinger equation

Assumption 3: The wave-function of a system 
evolves in time according to the time-dependent 
Schrödinger equation -

t
tzyxH

∂
Ψ∂

=Ψ hi  ),,,(ˆ

In general the Hamiltonian H is not a function of t, so we can
apply the method of separation of variables. 

f(t) z)y,(x, ),,,( ψ=Ψ tzyx

h
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-iE
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Time-independent  Schrödinger’s Equation 
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ψψ EH =ˆ Eigenvalue equation

The Schrödinger’s Equation is eigenvalue equation.

aψψ =Â

I. The eigenvalue of a Hermitian operator is a real number.

****Â ψaψ =

ψψaψψ ∫∫ = **Â

**** )Â( ψψaψψ ∫∫ =
*aa =

Proof:

Quantum mechanical operators have to have real eigenvalues

In any measurement of the observable associated with the 
operator A, the only values that will ever be observed are the
eigenvalues a, which satisfy the eigenvalue equation.



ijji dx δψψ   * =∫

II. The eigenfunctions of Hermitian operators are orthogonal

II. The eigenfunctions of Hermitian operators are orthogonal

Consider these two eigen equations

mmm ψaψ =Â

nnn ψaψ =Â

Multiply the left of the 1st eqn by ψm* and integrate, then 
take the complex conjugate of eqn 2, multiply by ψn and 
integrate

∫∫ =  a  ˆ *
n

* dxdxA nmnm ψψψψ

∫∫ =  a  ˆ **
m

** dxdxA mnmn ψψψψ



There are 2 cases, n = m, or n ≠ m

0**)a - (a 

**ˆ ˆ*

mn ==

−

∫
∫∫

dx

dxAdxA

nm

mnnm

ψψ

ψψψψ

0  **)a - (a mn =∫ dxnm ψψ ≠

Subtracting these two equations gives -

If n = m, the integral = 1, by normalization, so an = an* 

If n ≠ m,  and the system is nondegenerate (i.e.different 
eigenfunctions have the same eigenvalues, an ≠ am ), then 

0  *)a - (a mn =∫ dxnm ψψ

0  * =∫ dxnm ψψ

The eigenfunctions of Hermitian operators are orthogonal

ijji dx δψψ   * =∫
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Postulate 4 :  If ψ1, ψ2,… ψn are the possible 
states of a microscopic system (a complete 
set), then the linear combination of these 
states is also a possible state of the system.



Assumption 4 :  If ψ1, ψ2,… ψn are the possible 
states of a microscopic system (a complete set), 
then the linear combination of these states is also 
a possible state of the system.
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Postulate 5 : Pauli’s principle. Every atomic or 
molecular orbital can only contain a maximum 
of two electrons with opposite spins.
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Energy level diagram for He.  Electron configuration: 1s2

paramagnetic – one (more) unpaired electrons

diamagnetic – all paired electrons

E
ne

rg
y

1

2

3

0 1 2

n

l

ms = spin magnetic → electron spin

ms = ±½ (-½ = α)  (+½ = β)

The complete wavefunction for the description of electronic motion 
should include a spin parameter in addition to its spatial coordinates.

•Two electrons in the same orbital must have opposite spins.

•Electron spin is a purely quantum mechanical concept.

Pauli exclusion principle:

Each electron must have a unique set of quantum numbers.
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+   symmetry(Bosons)

- antisymmetry(Fermions)

The complete wavefunction for the description of electronic motion 
should include a spin parameter in addition to its spatial coordinates.

Fermions

•Particles that do obey the Pauli Exclusion Principle.

Bosons

•Particles that do not obey the Pauli Exclusion Principle
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Lesson 3    Summary

The basic assumptions (postulates) of quantum mechanics



1.4 Solution of free particle in a box  –
a simple application of Quantum Mechanics  

1.4.1 The free particle in a one 
dimensional box

V(x)= V(x)=

V(x)= 0

x=0 x=l

I

II

III

1. The Schrödinger’s Equation 
and its solution 
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II: V=0
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2. The properties of the solutions

a. The particle can exist in 
many states

b. quantization energy

c. The existence of zero-point 
energy. minimum energy 
(h2/8ml2)

d.  There is no trajectory but 
only probability distribution

e. The presence of nodes
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Discussion:

i. Normalization and orthogonality
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a. Obtain the potential energy functions followed by 
deriving the Hamiltonian operator and Schrödinger 
equation.

b. Solve the Schrödinger equation. (obtain ψn and En)

c. Study the characteristics of the distributions of ψn.

d. Deduce the values of the various physical quantities 
of each corresponding state.

The general steps in the quantum mechanical 
treatment:

3. Quantum leaks --- tunneling
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Tunneling

CLASSICAL MECHANICS

QUANTUM MECHANICS



Tunneling in the “real world”

• Tunneling is used:

- for the operation of many microelectronic devices 
(tunneling diodes, flash memory, …)

- for advanced analytical techniques (scanning tunneling 
microscope, STM)

• Responsible for radioactivity (e.g. alpha particles)

Tip

Piezo-Tube

STM System

Mode: Constant Current mode, Constant high mode
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1.4.2 The free particle in a three 
dimensional box

Let    ψ = ψ(x, y, z)= X (x) Y (y) Z (z) (separation of variables)
Substituting into 3-D Schroedinger equation

Out of the box,  V(x, y, z) = ∞
In the box, V(x, y, z) =0

Particle in a 3-D box of dimensions a, b, c
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Multiply degenerate energy level when the box is cubic

(a = b = c)
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The first excited state: ni=nj=1, nk=2

The wave-functions are called 
degenerate (triply degenerate)
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1.4.3 Simple applications of a one-
dimensional potential box model



Example 1: The delocalization effect of 1,3-butadiene

Four π electron form two 
π localized bonds

Four π electron form a π4
4

delocalized bonds

＞

l          l    l

E1

C CC C

E4/9

E1/9

C CC C

E=2×2 ×h2/8ml2=4E1
E=2×h2/8m(3l )2+
2×22 × h2/8m(3l )2 =(10/9)E1 

Example 2: The adsorption spectrum of cyanines

R2N-(CH=CH-)mCH=NR2

+..

Total π electrons: 2m+4

In the ground state, these electrons occupy 
m+2 molecular orbitals

The adsorption spectrum correspond to 
excitation of electrons from the highest 
occupied (m+2) orbital to the lowest 
unoccupied (m+3) orbital.
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Table 1. The absorption spectrum of the cyanine dye

R2N-(CH=CH-)mCH=NR2

+..

m          λmax  (calc) / nm λmax (expt) /nm

1      311.6                        309.0

2                412.8                        409.0

3                514.6                        511.0
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