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What is Chemistry

Thebranch of natural science that
dealswith composition, structure,
properties of substances and the
changes they under go.




Types of substances

Atoms ]
Molecules

Geometric Structure

Clusters
Congeries makes the difference

Nano materials

Electronic Structure
Bulk materials

Structurevs. Properties

Structure determines properties
Properties reflects structures




Inorganic Chemistry =~ Material Science
Organic Chemistry Surface Science
Catalysis Life Science
Electrochemistry Energy Science
Bio-chemistry Environmental Science
etc. etc.

| | | |

Structural Chemistry

Role of Structural Chemistry
In Surface Science
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Surface Structurevs. Catalytic Activity
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Role of Structural Chemistry
In Material Science




C Crystal Structures

= &
= Diamond: Insulator or wide bandgap
semiconductor:
= Graphite: Planar structure:
sp? bonding ~ 2d metal (in plane)

Structure makes the difference

=)
“Buckyballs” (Cgy) —>—>—>>—>>—>—>
“ Buckytubes” (nanotubes),
other fullerenes —»——

Zheng LS (£>23)), et al.
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Role of Structural Chemistry
In Life Science

What do proteins do ?

Proteins arethe basis of how biology getsthings . #

done. /9 %>
7

As enzymes, they are the driving force behind $ ;
all of the biochemical reactions which makes 7
biology work.

As structural elements, they are the main
constituents of our bones, muscles, hair, skin
and blood vessels.

As antibodies, they recognize invading 1
elements and allow the immune system to get / En

rid of the unwanted invaders. gj@"i




What are proteins made of ? ?‘

= Proteins are necklaces of amino acids, i.e. long chain
molecules.

Objective of Structural Chemistry

1) Determining the structure of a
known substance

2) Under standing the structure-
property relationship

3) Predicting a substance with
specific structure and property




Outline

Chapter 1 The basic knowledge of quantum mechanics
Chapter 2  Atomic structure

Chapter 3  Symmetry

Chapter 4 Diatomic molecules

Chapter 5/6 Polyatomic structures

Chapter 7 Basics of Crystallography

Chapter 8§ Metals and Alloys

Chapter 9  Ionic compounds

Chapter 1 The basic knowledge of
quantum mechanics




1.1 The failures of classical physics

- Classical physics: (prior to 1900)

Newtonian classical mechanics
Maxell's theory of electromagnetic waves
Thermodynamics and statistical physics

1.1.1 Black-body radiation




“Blackbody Radiation”

| visbie Light
Infrared (10pm) “thermal” image
experiment

Classical solution:

Rayleigh-Jeans Law

12000K

6000K (high energy, Low T)

Wien Approximation

(long wave length)

It can not be explained by classical thermodynamics and
statistical mechanics.

Solution to Blackbody problem

(problem: theory diverges at low wavelength)

solution:

1900: Max Planck proposed a formula
which fit the experimental data.

required that the energy in the atomic
vibrations of frequency v was an integer n
times a small, minimum, discrete energy,

E=nhv (n=0,1,2,...)
h 1s now known as Planck's constant,
=6.62x 1034 ] s
no known physical basis for the “fitting”




Black Body Radiation

Planck showed using quantum mechanics that a black
body would emit radiation of the form

2hv' / c*
BAT) ="

Many stellar sources can usefully be approximated to be
black bodies

2hv’
B (T)= eI Wien’s Approximation

p

Rayleigh-Jeans Law

1.1.2 The photoelectric effect




Nagging problem 2

“Photoelectron effect”

Observed by Hertz in 1887

Light causes electrons to come
out of a metal, but only above

a threshold frequency v

(i.e., a threshold energy hv)

Evacuated
ube

Light-
sensilive
rmetal
plate

) < |
Positive /o 4
electrode T A
+“ =1 Current
- f/’rﬂeter

@& ¥
Battary — y
e




The Photoelectric Effect

Electron

1. The kinetic energy of the gected electrons depends
linearly on the frequency of thelight.

2. Thereisa particular threshold frequency for each metal.
3. The increase of the intensity of the light results in the
increase of the number of photoelectrons.

Amplitude of a Wave

Higher

amplitude

(brighter)
Lower
amplitude
(dimmer)

|

Wavelength, A %

Classical physics: The energy of light wave should be directly
proportional to intensity and not be affected by frequency.




Explaining the Photoelectric
Effect

 Albert Einstein
— Proposed a corpuscular theory of light (photons).
— won the Nobel prize in 1921

1. Light consists of a stream of photons. The energy of a
photon is proportional to its frequency.

e =hv h = Planck’s constant
2. A photon has energy as well as mass. m= hv /c?
3. A photon has a definite momentum. p=mc= hv /c=h/A

4. The intensity of light depends on the photon density

Explaining the Photoelectric
Effect

Therefore, the photon’s energy is equaled to the
electron’s kinetic energy added to the electron’s
binding energy

Ephoton =E binding tE Kinetic energy

« hv=W+E,




Example |I: Calculation Energy from Frequency

Problem: What is the energy of a photon of electromagnetic radiation
emitted by an FM radio station at 97.3 x 108 cycles/sec?
What is the energy of a gamma ray emitted by Cs'37 if it has a frequency

of 1.60 x 102%/s?

Plan: Use the relationship between energy and frequency to obtain
the energy of the electromagnetic radiation (E = hv).

Solution:
E hoton =hv = (6.626 x 10-34J5)(9.73 x 10%/s) = 6.447098 x 10-24J

E =6.45x10-% ]

photon

E =hv = (6.626 x 10-3*Js )( 1.60 x 10?%/s ) =1.06 x 10-13J

gamma ray

E =1.06x 10-13J

gamma ray

Example Il: Calculation of Energy from Wavelength

Problem: What is the photon energy of of electromagnetic radiation
that 1s used in microwave ovens for cooking, if the wavelength of the
radiation is 122 mm ?
Plan: Convert the wavelength into meters, then the frequency can be
calculated using the relationship;,wavelength X frequency = c (where c
is the speed of light), then using E=hv to calculate the energy.

Solution:
wavelength = 122 mm = 1.22 x 10-'m

8
c _ 3.00x10°m/s _ 5 40\ 1010/

£ — —
SR wavelength 1.22 x 10-'m

Energy = E =hv = (6.626 x 10-34Js)(2.46 x 1019/s) = 1.63 x 10-23J




Example lll: Photoelectric Effect
|

The energy to remove an electron from potassium
metal is 3.7 x 10-1°J. Will photons of frequencies of

4.3 x 10'%/s (red light) and 7.5 x 104 /s (blue light)
trigger the photoelectric effect?

E ., =hv = (6.626 x10-34Js)(4.3 x10'4 /s)
E, ,=28x10-19]

E o = hv = (6.626 x10-34Js)(7.5x10'4/s)
E 4. =50x10-197]

The binding energy of potassiumis = 3.7x 10-1°]

The red light will not have enough energy to knock an
electron out of the potassium, but the blue light will eject
an electron !

E Total — E Binding Energy T EKinetic Energy of Electron

E Electron ETotal -E Binding Energy

=50x10-1J - 3.7x10-1]
=1.3x 10-Joules

E

Electron




1.1.3 Atomic and molecular spetra

The Line Spectra of Several Elements
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Planetary model:

» The electron are like planets --- orbit the nucleus

 Light of energy E given off when electrons change
orbits (i.e., different energies)

Why do the electrons not fall into
the nucleus?

Why only discrete energies?
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The Bohr Model Explanation of the
Three Series of Spectral Lines

Visible

&series

|
/Infrared
7 series

\\__ﬁ-f""

Ultraviolet series

Energy x 10% (J/atom)

_-—'-'_'-'-'-FH-

=

T
100 200
Wavelength (nm)

The Energy States of the Hydrogen Atom

Bohr derived the energy for a system consisting of a nucleus plus
a single electron

He predicted a set of quantized energy levels given by :

RZ?
E, =——F5

n

- R is called the Rydberg constant (2.18 x 10-'3J)
- n is a quantum number
- Z is the nuclear charge




Problem: Find the energy change when an electron changes from the
n=4 level to the n=2 level in the hydrogen atom? What is the wavelengt

of this photon?

Plan: Use the Rydberg equation to calculate the energy change, then
calculate the wavelength using the relationship of the speed of light.
Solution:

| |
E oo = -2.18 x10 18] = -—) -
photon X 1’112 n22

— 218 x 10—181< 1 1—) =-4.09x 10-19]

E 22 42

photon

hxc  (6.626 x 10-4J5)( 3.00 x 10° m/s)

E 4.09 x 10-19]
=4.87x 10" m =487 nm

=

Lesson 1 Summary

1.1 The failures of classical physics
Black-Body Radiation

The photoelectric effect

A corpuscular theory of light (photons)
e =hv h = Planck’s constant
p=h/A

Atomic and molecular spetra




1.2 The characteristic of the
motion of microscopic particles

1.2.1 The wave-particle duality of
microscopic particles

In 1924 de Beoglie suggested that microscopic
particles might have wave properties.




Different Behaviors of Waves and Particles

Particle
'Li__) Direction of Trajectory
light wave of a pebble
Air "‘\7
Water '
Angle of |
refraction | .
A ' 3
Crests of Beam of
waves particles
C D

Electron beam (50eV)

STM image of Si(111) 7x7 surface

Si Crystal




Electron as waves
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Spatial image of the confined electron states of a quantum corral.
The corral was built by arranging 48 Fe atoms on the Cu(111)
surface by means of the STM tip. Rep. Prog. Phys. 59(1996) 1737
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De Broglie considered that the wave-particle
relationship in light 1s also applicable to particles of
matter, 1.€.

h = Planck’s constant,

p = particle momentum,

A = de Broglie wavelength

The wavelength of a particle could be determined by
A= h/p = h/mv




de Broglie Wavelength

Example: Calculate the de Broglie wavelength of an
electron with speed 3.00 x 106 m/s.

electron mass =9.11 x 103! kg
velocity = 3.00 x 10° m/s

h 6.626 x 10-34Js

mv  (9.11x10-3kg)(1.00 x 10°m/s )

2
J =—kgzﬁ hence
S

Wavelength A =2.42x10m =0.242nm

The moving speed of an electron isdetermined by the
potential difference of the electric field (V)

|
EmV =elV 1eV=1.602x10-° ]

If the unit of V is volt, then the wavelength is:
h

2me\/V

6.626x107*

1
2%x9.110x107 x1.602x107° V'

- 1.226x107

Nz (m)

A=h/mv=




The de Broglie Wavelengths
of Several particles

Particles Mass (g) Speed (m/s) A (m)

Slow electron 9x10-28 1.0 7x10-4
Fast electron 9x10-28 5.9x 106 1x10-10
Alpha particle 6.6 x 10-2* 1.5 x 107 7 % 1015
One-gram mass 1.0 0.01 7x10-2°
Baseball 142 25.0 2x10-34

Earth 6.0 x 10%7 3.0x 10* 4x10-9

The wave-particle duality
* Wave (i.e., light)

- can be wave-like (diffraction)
- can be particle-like (p=h/\)

* Particles

- can be wave-like (A =h/p)

- can be particle-like (classical)




Discussions:
For photon:
p=mc,

E=hv=h (c¢/L) = pc = mc?

# p?/2m =(1/2) mv?

For particles:

p~=mv,

E=(1/2) mv? = p?/2m=pv/2

* pv

A=u/v ...uisnotthe moving
speed of particles.

1.2.2 The uncertainty principle




Heisenberg’s insight

Bohr, Heisenberg, Pauli (L to R) :

The more precisely the position is determined, the less
precisely the momentum is known in this instant, and
vice versa.

--Heisenberg, uncertainty paper, 1927

sinez()_C/&:%,z/%D:z/D

p, = psind

Ap=psind  (p,=0)

—paiD=22/p=2
A D

AxAp = h

Include higher order,

AxAp > h

A quantitative version




Measurement

«Classical: the error in the measurement depends
on the precision of the apparatus, could be
arbitrarily small.

Quantum: 1t 1s physically 1mpossible to
measure simultaneously the exact position and
the exact velocity of a particle.

Example

The speed of an electron 1s measured to be 1000 m/s to
an accuracy of 0.001%. Find the uncertainty in the
position of this electron.

The momentum 1s

p = mv=(9.11 x 103 kg) (1 x 10° m/s)
=9.11 x 1028kg.m/s

Ap=px0.001%=9.11x 10> kg m/s

AXx=h/Ap=6.626 x 1034/(9.11 x 10-33)
=17.27 x 102 (m)




Example

The speed of a bullet of mass of 0.01 kg i1s measured to
be 1000 m/s to an accuracy of 0.001%. Find the
uncertainty in the position of this bullet.

The momentum is

p = mv=(0.01kg) (1 x10°>m/s) =10kg.m/s

Ap=px0.001% =1x 10+ kg m/s

AX=h/Ap=16.626 x 1034/ (1 x 104)
=6.626 x 10739 (m)

Example

The average time that an electron exists in an excited
state is 10% s. What is the minimum uncertainty in

energy of that state?

AE At > 1

AE,. = h/At=1.06x10"Js/10% s

1.06x107>°

=1.06x107 J= ¢
1.6x10°

=0.66x107" eV




CLASSICAL vs QUANTUM MECHANICS

Macroscopic matter - Matter is particulate, energy varies continuously.
The motion of a group of particles can be predicted knowing their
positions, their velocities and the forces acting between them.

Microscopic particles - microscopic particles such as electrons exhibit
a wave-particle “duality”, showing both particle-like and wave-like
characteristics. The energy level is discrete. ...

The description of the behavior of electrons in atoms requires
a completely new “quantum theory”.

What i1s Quantum Mechanics?

QM is the theory of the behavior of very small objects (e.g.
molecules, atoms, nuclei, elementary particles, quantum fields,
etc.)

One of the essential differences between classical and quantum
mechanics is that physical variables that can take on continuous
values in classical mechanics (e.g. energy, angular momentum)
can only take on discrete (or quantized) values in quantum
mechanics (e.g. the energy levels of electrons in atoms, or the
spins of elementary particles, etc).




Lesson2 Summary

The wave-particle duality
* Wave (i.e., light)

- can be wave-like (diffraction)
- can be particle-like (p=h/A)

* Particles

- can be wave-like (A =h/p)
- can be particle-like (classical)

The uncertainty principle

1.3 The basic assumptions
(postulates) of quantum mechanics




Postulate 1. The state of a system is
described by a wave function of the
coordinates and the time.

In CM (classical mechanics), the state of a system of N particles
is specified totally by giving 3N spatial coordinates (Xi, Y1, Zi)
and 3N velocity coordinates (Vxi, Vyi, Vzi).

In QM, the wave function takes the form y(r, t) that depends on
the coordinates of the particle and on the time.

For example:

The wavefunction of plane monochromatic light:

w = Aexpli2zn(x/ A—vt)

The wavefunction ¥ for a single particle of 1-D motion is:

w = Aexp[(i27z / h)(xp, — Et)




A wave function must satisfy 3 mathematical conditions:

1. Single-value
2. Continuous
3. Quadratically integrable.

The probability

v * (r, )y (r,t)dxdydz The probability that the particle

lies in the volume element
dxdydz, located at r, at time t.

To be generally nor malized

o0 00 O

J‘J.IW*(’"at)W(V,t)dxdde 1

—00—00—00

Postulate 2. For every observable mechanical
quantity of a microscopic system, there is a
corresponding linear Hermitian operator
associated with it.

To find this operator, write down the classical-mechanical
expression for the observable in terms of Cartesian coordinates
and corresponding linear-momentum, and then replace each
corrdinate x by the operator, and each momentum component p,
by the operator —1ho/0x.




An operator is a rule that transforms a given function
into another function.  E.g. d/dx, sin, log

D = d/dx fx)=x>-5

Df (x) = (x> =5)'=3x"

(A + B)f(x) = Af(x) + Bf(x)
(A - B)f(x) = Af(x) - Bf(x)
ABf(x) = A[Bf(x)]

Operators obey the associative law of multiplication:

A(BC) = (AB)C

* A linear operator means A(\Vl +\|]2) — A\Vl i A\V2
Acy = cAy

* A Hermitian operator means

* A Hermitian operator ensures that the eigenvalue of the
operator is a real number




Eigenfunctions and Eigenvalues

Suppose that the effect of operating on some function f(x)
with the operator A is simply to multiply f{x) by a certain
constant k. We then say that f{x) is an eigenfunction of A
with eigenvalue k.

Eigen 1s a German word meaning characteristic.

Af(x) = kfx)

(d/dx)e™ =2e™

Examples
X, D, Hermiton  operators
o d :
— — Not Hermiton  operators
ox dx

Examples for calculation
[“wisynde =" yisynde =7 xylyde =

Iio%xlﬂ;df = j iowl//z(xw)fdrzj‘fw%)el//:‘df

w + O

- % A - * . 8 .
J' “ W PWLdT = I ¥ (_Zha)l//zdf = _lh_[ ¥ a‘//zdr =

. * 0 0 a * . 0 a * 0 A ¥ *
—ihlyy, [ = “w,s —yhide] =ih[ "y, p dr =" vp, v,




Mechanical quantities and their Operators

To every physical observable there corresponds
a linear Hermitian operator. To find this
operator, write down the classical-mechanical
expression for the observable in terms of
Cartesian coordinates and corresponding linear-
momentum components, and then replace each

coordinate x by the operator x. and each

momentum component p, by the operator -
1ho/ox.

Some Mechanical quantities and their Operators

M echanical quantities Methematical Operator

Position X R =x
Momentum (X) Py b= ih 0 _ - 9

27 OX [9):9
Angular o i ( PR :
Momentum (z) M, =xp,-ypy 2= W Y

2 2 2 2 2
Kinetic Ener T=p?2m #$-." (9 0 0, I
&7 P 87z2m(8x2 oy’ oz’ 87°m

Potential Energy V V=V
Total Energy E=T+V A= & (82 n 0 n 0" )+ V

87°m ox° 0Oy’ 07’




The average value of the physical observable

If a system is in a state described by a normalized wave
function y, then the average value of the observable
corresponding to A is given by —

Exercise:

Suppose a particle in a box is in a state -
30,5
Y(x)=(—=)*x(a—x) 0<x<a
a
= 0 otherwise

Note that the wave function y(x) is not an eigenfunction for a
particle in a box. Sketch y(x) vs. x and show that y(x) is
normalized. Calculate the average energy associated with this
state. (Assume V = 0).

7 7 2 2
H=- hz d2+V:' hz dz
87°m dx 87°m dx
(E)=[ W HWdx o
0 Ar*ma’




If the wave function is an eigenfunction of 4, with eigenvalue a,,

then the a measurement of the observable corresponding to A

will give the value a, with certainty.

(a)=["w,*a¥,dz
= J: Y *a, ¥ dr

= a, J: Y ¥ dr

Thus the only value we measure is the value a,,.

Commuted operators

* When the two operators commute, their
corresponded mechanical quantities can be
measured simultaneously.




Postulate 3: The wave-function of a system
evolves in time according to the time-
dependent Schrodinger equation

Assumption 3: The wave-function of a system
evolves in time according to the time-dependent

Schraédinger equation -

A ., oY
H‘P(x,y,z,t) :lha—
t
In general the Hamiltonian H is not a function of t, so we can

apply the method of separation of variables.

Y(x,y,z,t) =y (X, Y, z) {(t) y
A . t
b )= {ft )
Hy(xy,2) _, 1 df@) _
v(xy,z) S di
Hy(x,y,2) = Ey(X,Y,2)
in L 40O _g i
fr) dt w(x,y,z,t) =y(x,y,z) e




Time-independent Schrodinger’'s Equation

Eigenvalue equation

The Schrédinger’s Equation is eigenvalue equation.

In any measurement of the observable associated with the
operator A, the only values that will ever be observed are the
eigenvalues a, which satisfy the eigenvalue equation.

|. The eigenvalue of a Hermitian operator isareal number.

Proof:
1 *
nmmmp> YY)

[v@Ay)=a[w'

Quantum mechanical operators have to have real eigenvalues




II. The eigenfunctions of Her mitian oper ator s ar e orthogonal

|1. The eigenfunctions of Her mitian operators ar e orthogonal

Consider these two eigen equations
Ay, =ay,

Ay, =a,y,
Multiply the left of the Ist eqn by vy, * and integrate, then

take the complex conjugate of eqn 2, multiply by y, and
integrate

[, Ay, de=a, [y, dx




Subtracting these two equations gives -

_[%: * 4 v, dx _IW,1121*W,,1 *dx
=(a,-a,")|, *y,dx=0

(an - a’m*)J. Wﬂ’l * l/}ndx — O

There are 2 cases, n =m, or n # m

If n = m, the integral = 1, by normalization, so a, = a *

If n # m, and the system is nondegener ate (i.e.different
eigenfunctions have the same eigenvalues, a, # a_, ), then

The eigenfunctions of Hermitian operators are orthogonal




Example:

1 -rla 1 -r/2a r
@, (H)= e Dy = e ‘2-—)
\mag \32ma; 0

40 1 2r pm o r
P, dT = e e 2 (2 ——)r* sin Odrd6d
J:oo Pis P2 4 /27[613 IO J-O .[0 ( ao) ¢

3

47[ 0 2a, 2 r
= e “r (2——)dr
42700’ '[0 a,

3r 3r

R WY O PO L
_ﬁag[JOe rdr—joe —dr

a
3r ’
A Y 16 16
0 240 A0 v 3
-5 27[ Cytdy Slfoe ydy]
1 16 16 16

0

=57 TO)- ) - T (2273

Postulate 4 : If vy, v,,.. v, are the possible
states of a microscopic system (a complete
set), then the linear combination of these
states is also a possible state of the system.




Assumption 4 : If yq, v,,.. v, are the possible
states of a microscopic system (a complete set),
then the linear combination of these states is also
a possible state of the system.

Y=y +ap, tay;--+cp, :ZCiWi

Postulate 5 : Pauli's principle. Every atomic or
molecular orbital can only contain a maximum
of two electrons with opposite spins.




Energy level diagram for He. Electron configuration: 1s2
A 0 1 2 |

paramagnetic — one (more) unpaired electrons

diamagnetic — all paired electrons

The complete wavefunction for the description of electronic motion
should include a spin parameter in addition to its spatial coordinates.

m¢ = spin magnetic — electron spin
mg==*% (Y2=a) (+*2=)

Pauli exclusion principle:

Each electron must have a unique set of qguantum numbers.

*Two electrons in the same orbital must have opposite spins.

Electron spin is a purely quantum mechanical concept.




The complete wavefunction for the description of electronic motion
should include a spin parameter in addition to its spatial coordinates.

O=¥Yn,l,m)- y(s,m,)

for two — electron atom(He)

¢(Q1,Q2)

‘¢(Q1,Q2)‘2=‘¢(%,%)‘2 } + symmetry(Bosons)

#(q,9,) =£9(q,9,) - antisymmetry(Fermions)

eParticles that do obey the Pauli Exclusion Principle.

Particles that do not obey the Pauli Exclusion Principle

Lesson 3 Summary

The basic assumptions (postulates) of quantum mechanics




1.4 Solution of free particle in a box -
a simple application of Quantum Mechanics

1.4.1 The free particle 1n a one
dimensional box

1. The Schrodinger’s Equation
and its solution

(V=) V-—E=V




iox

e’ =cosax +isinax
e'* = cosax —isin ax
w=Ae"+Be’™
w = Acosax + Bsin ax

Boundary condition and continuous condition: y(0)=0,
w(l)=0

Hence, y(0) =Acos0+Bsin0
A=0,B+#0 wy=Bsinoax

v (/) =Bsinax =Bsin a/=0, Thus, a/=nm,

Normalization of wave-function:

sin? xdx = lx—lsin 2x
2 4




2. The properties of the solutions

a. The particle can exist in
many states

b. quantization energy

c. The existence of zero-point
energy. minimum energy
(h2/8ml?)

d. There is no trajectory but
only probability distribution

e. The presence of nodes

Energy levels in the well yAx) o sin(nmx/a) Probability density o | p(x)|2

fa\




Discussion:

1. Normalization and orthogonality

I v (X, (x)dx = —I sin 7% sin @ dx =0

11. Average value

2¢ . nmx . NIX [
<X >=—J sin——xsin——dx =—
[ Y0 [ [ 2

If the wave function is an
eigenfunction of 4

(a)=[ w*a¥dr = W*a¥dr

= aJ.OO‘I’*‘PdT =a

i11. Uncertainty

Ax=Al<x?>—< x>’ =

[
243

/ nh nh

"2 43

when n=1 (ground state)

h
AxAp = —
v 27




The general steps in the quantum mechanical
treatment:

. Obtain the potential energy functions followed by
deriving the Hamiltonian operator and Schrédinger
equation.

. Solve the Schrodinger equation. (obtain v, and E,)

c. Study the characteristics of the distributions of v,

. Deduce the values of the various physical quantities
of each corresponding state.

3. Quantum leaks --- tunneling

The probability of penertration is
given by

2
P~a4E/MI-(E/M)e ™" " IAESY




Tunneling

| Quantum Tunnsling

Classical Picture -

clectron . e

W

electron
wave —P

in classui:‘:ilbl;-lysicfé the c};::lﬁm
isrepe an electiric as

— . long as cnergy of cleciron is below
energy level of the field

tinite probability of tanncling through

in guanium physics, the wave
function of the clectron cncounters

. the clectric ficld, but has somc

this is the basis for wansistors ‘ —P

CLASSICAL MECHANICS

UANTUM MECHANICS




Tunneling in the “real world”

 Tunneling is used:

- for the operation of many microelectronic devices
(tunneling diodes, flash memory, ...)

- for advanced analytical techniques (scanning tunneling
microscope, STM)

» Responsible for radioactivity (e.g. alpha particles)

STM System

i %4 et I ets

Mode: Constant Current mode, Constant high mode




1.4.2 The free particle 1n a three
dimensional box

Particle in a 3-D box of dimensions a, b, c

Out of the box, V(X,y, z) = <
In the box, V(x, y, z) =0

Let w=w(XY,2)=X(X)Y (y) Z (z) (separation of variables)
Substituting into 3-D Schroedinger equation




(separation of variables)

oot ot 0
- 2 TSt
87°m 0°x 0’y 0’z
a?_

2 2 2

O O xyz-Exvz,
8rz°m 0°x 0y 0z '
W YZ0'X XZ0'Y XYo'Z

o 2 2 + 2 + 2

&qr'm  O0°x 0’y 0z
W 0*X h*  8%Y o0*Z
e el Bt ot
87°m X0 x &q7'm Yo'y Z0z

)= EXYZ

The solution is;




Multiply degenerate energy level when the box is cubic

2
ma

n n
+—2L+
8
3h?
The ground state: n=n,=n,=1 E=
8ma

The first excited state: n=n=1, n,=2

2
4
2
2

: 6h
The wave-functions are called E = -
degenerate (triply degenerate) e
1
1

|
I 2
2 1

1.4.3 Simple applications of a one-
dimensional potential box model




Example 1: The delocalization effect of 1,3-butadiene

Four & electron form two  Four = electron form a m,*
n localized bonds delocalized bonds

E=2X2 Xh28mp=4E, > E=2Xh?8m(3/)>+
2X 22 X h2/8m(31)2 =(10/9)E,

Example 2: The adsorption spectrum of cyanines

The general formula of the cyanine dye:

R,N-(CH=CH-), CH=NR,

Total & electrons: 2m+4

In the ground state, these electrons occupy
m+2 molecular orbitals

The adsorption spectrum correspond to
excitation of electrons from the highest
occupied (m+2) orbital to the lowest
unoccupied (m+3) orbital.

2 2

h 2 2
AE = +3) —=(m+2)" )=
S [om+3)"=(m+2) =2

e e

(2m+5)




(2m+5)

AE & ) o h
=—= +3) —(m+2) =
g P m a2y =2

e e

2
_ Smlc 330 W= 248m+565(pm)

hQ2m+5) 2m+5

Table 1. The absorption spectrum of the cyanine dye
o +
CH=NR,

R,N-(CH=CH-)

m

Amax (calc)/nm Amax (expt) /nm

311.6 309.0
412.8 409.0
514.6 511.0




