Chapter 2 Atomic structure

2.1 The Schrédinger equation and
iTs solution for one-electron atoms

2.1.1 The Schrodinger equation

The Hamiltonian Operator of one-electron atoms
H atom, He* and Li?*




Consider that the electron approximately surrounds the
atomic nucleus, the Hamilton operator can be simplified as

Separation of variables ?

Spherical polar coordinates
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Spherical polar coordinates
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The Schrodinger equation
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2.1.2 The solution --- separation of variables

Substitute Y(r, 06, ¢) =R(r)O(0)D(¢) into the equation
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Its complex form:
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complex function
O, =Ae™ (m=0,+1,12,

Usually, real functions are used, which are deduced from
the complex function according to the assumption of the
linear combination of these states .
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Table The solution of ®(¢) equation
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b. ®(6) equation
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When B=/(/+1), [/ =0,1,2,3, ®(0) is a well behaved function,

[ . angular momentum quantum number

necessary condition: /> |m|
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c. Solution of R equation
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R is called Rydberg constant with the value of 13.6 eV

Example:

n=1, [=0




Some wavefunctions of hydrogen atom and hydrogen-like ions
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2.2 The physical significance of
quantum number




2.2.1 The allowed values of quantum numbers

Quantum Numbers

N AN /RN
Ry

-2-10+1+2 -2-10+1+2
-3-2-10+1+2+3

Problem: What values of the azimuthal (I) and magnetic (m) quantum
numbers are allowed for a principal quantum number (n) of 4? How

many orbitals are allowed for n=4?

Solution: The 1 values go from 0 to (n-1), and for n=3 they are:
1=0,1,2,3. The values for m go from -I to zero to +1
Forl=0, m =0
m,=-1,0,+1
m,=-2,-1,0, +1, +2
m,=-3,-2,-1,0, +1, +2, +3

Thereare 16 m_values, sothere are 16 orbitals for n=4!

e The total number of orbitals for a given value of n is n2.




2.2.2 The principal quantum number, n

*Also called the “energy ““ quantum number, indicates the
approximate distance from the nucleus .

* Denotes the electron energy shells around the atom, and is
derived directly from the Schrodinger equation.

* The higher the value of “n” , the greater the energy of the
orbital.

» Positive integer values of n= 1,2, 3, etc.

Example: Energy states of a H atom.

n = principal

n=1,2,3...©
n =1 : ground state R=13.6¢eV E, =-13.6eV
n = 2 : first excited state

n = 3 : second excited state

E,=-3.40 eV
E,=-1.51eV
Continuum

E,=-0.85eV

E. =-0.54 eV

series




Example: Energy states of a Li* ion.
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2.2.3 the azimuthal quantum number, /

The operator of angular momentum
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» Denote the orbital angular momentum.

When there exist an angular momentum, there is
also a magnetic moment.
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Denote the orbital angular momentum.

Indicates the shape of the orbitals around the nucleus.

*Denotes the different energy sublevels within the main level “n”

|1=0,1,2..n-1 degeneracy=21+1

I 4, 5, 6 ...
type g, h, i...
degeneracy 9, 11, 13 ...

=
E
=
=
=
=
[
i

2.2.4 Magnetic Quantum Number , m
* Determine the z-component of the orbital angular
momentum of the atom.

* Determine the component p, of the magnetic moment in
the direction of the magnetic field.
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2.2.4 Magnetic Quantum Number , m

e Denotes the direction or orientation of an orbital

m =0, £1, £2 ... x| -
orbital

3

number of orbitals in a subshell
=21+1
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2.3 The wave-function and electron
cloud

2.3.1 The wave-functions of hydrogen-like ions

Fig. (left) The y-r and y?-r diagram of the 1s state of the
hydrogen atom. (right) The y-r of the 2s state .




A Radial
Probability
Distribution

of Apples

Number of apples
in each ring

Distance from trunk

2.3.2 The radial distribution function

» The probability of finding electron in the region of space r
+dr,0+db, o +dop

dr = r’ sin @drd 6d ¢

|’z =[R,(N][V"(6.0)| r* sin bdrd 6dg

*What is the probability of electron at » + dr,(in a thin spherical
shell centered at the origin)?
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55 t Normalized spherical harmonics
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Y = wave function

Y2 = probability density

r’R? = radial probability

function
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e A spherical surface with
the electron density of
zero 1s called a node, or
nodal surface.

The radial distribution
function has (n-/) maxima
and (n-/-1) nodal surfaces

Fig. The radial distribution diagram (D(r)-r )

2.3.3 The angular function ( Y,,(6,0) )

Y(r,0,p) = ROD = RY (0, p)

» Angular part

Y, (0,0)=0,0)0,(p)

Indicates the angular distribution of an atomic orbital.
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Angular function (Y,,(6,0) )
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d-Orbital
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Nodes

A node 1s a surface on which an electron is not found.
For a given orbital, the total number of nodes equals n-1.

The number of angular nodes is /.

d_, (I=2) f (I=3)

2.4 The structure of many-
electron atoms
(multi-electron atoms)




2.4.1 Schroedinger equation of many-electron atoms

For hydrogen - like atoms :

4re,r
atom unit (au.)

f=-ly_Z
2 r
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n Z Z 1
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2 h n I
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for many — electron atoms
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Many electron atoms

He,Z=2

Predict: E; = -54.4 eV

Actual: E; =-24.6 eV

Something is wrong with the Bohr Model!

Self-consistent-field (SCF) method

Central field method

The electron moves in an average field contributed
from the nucleus and the other electrons.




Slater approximate method for central field

o. Screen constant

The presence of other electrons around
a nucleus “screens” an electron from
the full charge of the nucleus.

n Z*. Effective nuclear charge
RnJ — (2§) 2 rn—le_é:,,
Z-o, n*. Effective principal quantum number

*

1 n*=n (whenn < 3)

E =(%=%y. ol n*=3.7 (when n = 4)
: n dre,a,
Z-o, n*=4.0 (when n = 5)

=—R-(Z 1

——13.6eV- (2%
n

Lithium , Z =3

Predicted: E; = -30.6 eV

Actual: E; =-5.4 eV




a. Screen (shielding) constant

Slater’s rules for the prediction of ¢ for an electron:

. Group electron configuration as follows:
(1s)(2s,2p)(3s,3p)(3d)(4s,4p)(4d)(41)(5s,5p) etc.

. Electrons in the right shells (in higher subshells and shells) of
an electron do not shield it.

. For ns or np valence electrons:
a) each other electron in the same group contributes 0.35
(0.30 for 1s)
b) each electron in an n-1 group(s) contribute 0.85
c) each electron in an n-2 or lower group contributes 1.00

. For nd or nf valence electrons:
a) each other electron in the same group contributes 0.35
b) each electron in a lower group (to the left) contributes 1.00

The basis of Slater’s rules for o

s and p orbitals have better “penetration” to the nucleus than
d (or f) orbitals for any given value of n

l.e. there is a greater probability of s and p electrons being
near the nucleus | notcontibute

This means:
1. ns and np orbitals completely shield nd orbitals

2. (n-1) s and p orbitals don't completely shield n s and p
orbitals




Example : O,Z =8
Electron configuration: 1s2 2s? 2p*

a) (1s?) (2s?22p?)
b) o =(2*0.85) + (5*0.35) = 3.45
1s 2s,2p

Z*=Z-0

Z*=8-3.45=455

This electron is actually held with about 57% of the
force that one would expect for a +8 nucleus.

Example: Ni, Z = 28

l*=7-c

Electron configuration: 1s2 2s? 2p% 3s2 3p® 3d® 4s?

(1s?) (252 2p°) (352 3pd) (3d?) (4s2)

For a 3d electron:
o =(18*1.00) + (7 * 0.35) = 20.45
1s,2s,2p,3s,3p 3d

Z*=7-c Z*=28-2045=7.55

For a 4s electron:

o = (10 * 1.00) + (16 * 0.85) + (1 * 0.35) = 23.95

1s,2s,2p 3s,3p,3d 4s

Z*=7-0c Z*=28-23.95=4.05




B. Approximation of the atomic orbital energy

Example: Mg, 1s22s22p63s?

(12-0.3)

= —136.89R = R o =—136.89R

_ _ 2 2
__p2 0.85><222 0.35x7) :_R7.i5 15408

_ _ _ 2
- (12-1.00x2-0.85x8—0.35)  _0.9005R

32

2.4.2 The 10nization energy and
the affinity energy




I. Ionization energy:

The minimum energy required to remove an electron from
one of its orbitals (in the gas phase).

A(g) > A" (g)+e

I, =E(A")—E(A) The first 1onization energy
IBETACRRPAPN] | The second ionization energy

TABLE 7.2 5ucceszive YWalues of lonization Energies, I for the Elernents
Sodiumn Through Argon (kL ol

Element [y £ £ £y I Ig I

Na "1“’_" paelall (Inner-shell elec trons)
1=y 738 1450
A1 RYH 1820 ._"."':ul |

Si TaA 1580 3230 4360 14,100
P 1012 1900 2910 4940 el y

S 1000 22R0  E360 dRAD FO10 -:-'SI_III 27100
l._l 1251 :E-l:u:l F3E20  H140 AR Qa0 11 00

1521 SB70 3950 RETFD F2d0 e 12,000




Periodic Trends in Ionization Potentials

Atomic number

ll. Estimation of ionization energy
Example: C—»C*, 1s22s%2p? — 1s22s22p?
I,=AE=E(C*)-E(C)

for

C+

Z-0=6-(2x0.35+2x0.85)=3.60

for

C

/—-0=3.25

I, =—[3><(%)2—4><(

1

actual

3.25

—~ )*]-R =11.44ev

=11.22ev




III. Electron Affinity

The electron affinity 1s the energy change that occurs
when an electron is added to a gaseous atom .

B(g) + e =2 B (g)+tA

* Electron affinity usually increases as the radii of atoms
decrease.

* Electron affinity decreases from the top to the bottom of
the periodic table.

IV. The Electronegativity

e Electronegativity was proposed by Pauling to
evaluate the comparative attraction of the bonding
electrons by the atoms.

It can be concluded that:

1. The electronegativities of metals are small while those
of non-metal are large.

. Generally, the electronegativity increases from left to
right across the periodic table but it decrease from top to
bottom within a group.

. Elements with great difference in electronegativities
tend to form 1onic bonds.




2.4.3 The building up principle
and the electronic configurations

I. The building up principle (for ground state)

. Pauli exclusion principle.

Every orbital may contain only two electrons of
opposite spins.

. The principle of minimum energy.

Whilst being compatible with the Pauli principle,

electrons occupy the orbital with the lowest energy
first.




For multi-electron atoms:

The energy level can be estimated by n+0.7/. (G.X. Xu proposed.)

sw st e @ W

DRI AL NUNE

Therefore, the sequence of the atomic orbitals is: 1s, 2s,
2p, 3s, 3p, 4s, 3d, 4p, 5s, 5p, 6s, 4f, 5d, 6p

* The orbitals have
different energies
and for the d and f
orbitals, the energies
overlap s-orbital
energies in the next
principal level.

— e —— —

AN
I
.

: 1s,2s,2p,3s,3p.4s,

| 3d,40,5s,4d,5p,6s,

41,5d,6p,7s,...
Relative
Energies
of the

4 — orbitals




The principle of minimum energy.

I. The building up principle (for ground state)
« Pauli exclusion principle.

Every orbital may contain only two electrons of
opposite spins.

. The principle of minimum energy.

Whilst being compatible with the Pauli principle,
electrons occupy the orbital with the lowest energy
first.

Hund’s rule.

In degenerate energy states, electrons tend to occupy
as many degenerate orbitals as possible. ( The
number of unpaired electrons is a maximum.)




I1. The electronic configuration (for ground state)

i =1s22s! .
Be = 152252

Ne = 152282 2pb Tl

The Periodic Table of the Elements
Electronic Structure

“ s’ Orbitals . “p” Orbitals

. “ d” Orbitals . “ f” Orbitals




Electron Configuration using the Periodic Table

Main-Group Elemenis Main-Group Elements
- .1 'E

VINA,
13 14 15 16 17 o

WA IVA VA VIAVIA 15

e SR

e 1ve Ve VIE VIIE YiliE B g

g B

Inner-Transition Melals

*Lanthanides
**actinides

2.5 Atomic spectra and spectral
term




2.5.1 Total Electronic Orbital and Spin Angular Momenta

a. Addition of two angular momenta:

The addition of two angular momenta characterized by
quantum number j, and j, results in a total angular momentum
whose quantum number J has the possible values:

J=j 1 Jitir L s ]

4

LA
=
N\

J17J>
——

Example: Find the possible values of the total-angular-
momentum quantum number resulting from the addition of
two angular momenta with quantum numberj, =2 andj,= 3.

Solution: j,+j,=2+3=5
17,1 =12-3|=1
The possible J values are: 5, 4, 3, 2, 1




Example: Find the possible values of the total-angular-
momentum quantum number resulting from the addition of two
angular momenta with quantum number j, =2 and j, = 3/2 .

Solution: j,+j,=2+3/2=7/2
j7,1=12-3/2|=1/2
The possible J values are: 7/2, 5/2, 3/2, 1/2

B. The total electronic orbital angular momentum

The total electronic orbital angular momentum of an n-electron
atom is defined as the vector sum of the angular momenta of the
individual electron:

The total-electronic-orbital-angular-momentum quantum
number L of an atom is indicated by a code letter:

L 0 | 2 3 4 5 6 7

Letter S P D) F G H | K

For a fixed L value, the quantum number M, (M, h---the z
component of the total electronic orbital angular momentum)
takes on 2L+1 values ranging from —L to L.




Example: Find the possible values of the quantum number L for

states of carbon atom that arise from the electron configuration
15°2s°2p3d.

Solution:

=0 p =1 d I=2

l Addition of two angular momenta rule

The total-orbital-angular-momentum quantum number
ranges from 1+2 =3 to |1-2| =1

l

C. The total electronic spin angular momentum

The total electronic spin angular momentum S of an n-electron

atom 1s defined as the vector sum of the spins of the individual
electron:

For a fixed S value, the quantum number Mg takes on 25+1
values ranging from —S to S.




Example: Find the possible values of the quantum number S for

states of carbon atom that arise from the electron configuration
15°2s°2p3d.

Solution:

Is electrons: M, =+ 15 - 72 =0
2s electrons: M, =+ 7> - 1> =0

2p electrons: m, =Y 3d electrons: m, = >

l Addition of two angular momenta rule

1,0

D. The total angular momentum

J=(L+S), L+S)—1,..|L-S|

Spin — orbit coupling




2.5.2 Atomic term and term symbol

A set of equal-energy atomic states that arise from the same
electron configuration and that have same value of L and the
same S value constitutes an atomic term.

Term symbol: 25t!L

Each term consists of (2L+1)(2S+1) atomic states. (spin-
orbit interaction neglected)

D . L=2,8=1
P: L=1,85=1/

2.5.3 Derivation of Atomic term

a. Configurations of Completely filled subshells
ME==m =0 ---> S=0
M=2m,=0 ---> L=0
Only one term: IS

b. Nonequivalent electrons.

(2p)!(3p)!

We need not worry about any restrictions
imposed by the exclusion principle

[=1, =1 L=2,1,0 3D, D, 3P, IP, 3S,

m,=% m,="% S=1,0 'S

S

terms




c. Equivalent electrons.

1s22s22p?> - np? (two electrons in the same subshell)

Equivalent electrons have the same

The number of microstates: value of n and the same value of . Two

C2 =15 electrons should avoid to have the same
6 four quantum numbers.

A
M, =ZmI(i) M =2171S(i) ML

O N O
D G R B
o]
—

0
S I
R ISR
I R R R
I I N
X o]

A

* The term arising from a subshell containing N electrons are
the same as the terms for a subshell that is N electrons short
of being full.

Term: p° === pb

pl _— p5




D. Energy level of microstates: (terms).
Hund’s Rule:

1. For terms arising from the same electron configuration the
term with the largest value of S lies lowest.

2. For the same S, the term with the largest L lies lowest.

E. Spin-Orbit interaction.
The spin-orbit interaction splits an atomic term into levels.

The splitting of these levels gives the observed fine structure
in atomic spetra.

28+ - 2S+1LJ ]:L—i—s, L—I—S-l, cees |L-S‘

np3 2P, 2D, 49
1S 2> 4S5,
‘D > 2D5/27 2D3/2




E. Ground state of the terms
Hund’s Rule:

3. For the same L and S values, when the number of

electrons is half-filled or less, the term with the smallest J
lies lowest; whereas when the number of electrons is more

than half-filled, the term with the largest J lies lowest.

L L3, $5302 >Ry,

L=1, S=1 ->3P,

Example: Why does Cu Ka radiation ( X-ray ) consist
of Ko, and Ko, radiations?

Ground state 182252 2p%3s2.......

Excited state 1s12s22p®3s2..... Is!

2
S1/2

l X-ray Ka radiation

1s22s22p>3s2..... 2p°

2 2
P1/2 P3/2

Ist 2§,
Ka, SN Ka,

2p° 2P1/2 2P3/2




