
Chapter 4 The structure of diatomic molecules

§1  Treatment of variation method for the H2
+ ion

1.  Shroedinger equation of H2
+
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Born-Oppenheimer Approximation
• The electrons are much lighter than the 

nuclei.
• Nuclear motion is slow relative to the 

electron motion.
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H2
+ can be solved exactly using confocal elliptical coordinates:
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ξξ = (= (rraa++rrbb)/R)/R
ηη = (= (rraa--rrbb)/R)/R
φφ is a rotation around zis a rotation around z

0 0 ≤≤ φφ ≤≤ 22ππ;  ;  
1 1 ≤≤ ξξ ≤≤ ∞∞;  ;  
--1 1 ≤≤ ηη ≤≤ 11
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ψelec = F(ξ,η) (2π)-1/2 eimφ

where m=0, ±1, ±2, ±3, 
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The associated quantum number is λ.  orbital angular momentum
λ =|m| 

Each electronic level with m ≠0 is doubly degenerate, i.e. + |m|,-|m|

atoms:  l = 0,1,2,... and the atomic orbitals are called: s,p,d, etc.

diatomics: λ = 0,1,2, ... and the molecular orbitals are: σ, π, δ, etc.
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ψelec = F(ξ,η) (2π)-1/2 eimφ

λ =|m| 

πσ δ



2. The Variation Theorem

For any well-behaved wavefunction φ, the average energy from 
the Hamiltonian of the system is always greater or close to the 
exact ground state energy (E0) for that Hamiltonian,

0*

ˆ*
E

d

dH
E ≥

∫
∫>=<

τφφ
τφφ

Example: Devise a trial variation function for the particle in a 
one-dimensional box of length l.
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A simple function that has the 
properties of the ground state 
is the parabolic function:
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The Eigenfunctions of an 
Hermitian operator consist 
of a complete set. ψ1, ψ2,

ψ3 …consist of an 
orthogonal normalized set 
of wavefunctions
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Based on this principle, the parameters 
are regulated by the minimization routine so 
as to obtain the wavefunction that 
corresponds to the minimum energy. This is 
taken to be the wavefunction that closely 
approximates the ground state.
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3. Linear Variation Functions
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A linear variation function 
is a linear combination of 
n linearly independent 
functions f1, f2, …fn.
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The algebraic equation has n roots, which can be shown to be real. 
Arranging these roots in order of increasing value: E1≤ E2≤… ≤En.

The algebraic equation has 2 roots, E1 and E2.

• From the variation theorem, we know that the lowest value of root 
(W1) is the upper bound for the system’s ground-state energy. 

E1≤W1

• We use the roots as approximations to the energies of the lowest
states.

• If approximation to the energies of more states are wanted, we 
add more functions fk to the trial function φ. 

• The addition of more functions fk can be shown to increase the 
accuracy of the previously calculated energies.

E2≤ W2, E3≤ W3, … , En ≤ Wn, 

•Moreover, it can be proved that the linear variation method 
provides upper bounds to the energies of the lowest n states of the 
system.



3.  The solution of H2
+

A B

e- rbra

R
θ

For H2
+ that is :

Note :  we have as many linear combinations
as we have atomic orbitals

a

r

A

ae
s ψ

π
==

−

      1

b       1 ψ
π

==
− br

B

e
s

bbaa cc ψψφ += Trial functions

)(

)()(

 as form same  thehas 
22

,

ababaaaa

ababaaaa

baabbbaaba

ESHESH

ESHESH

HHHH

−±=−
−=−

==∴ψψQ

0=
−−
−−

+=

bbbbbaba

ababaaaa

bbaa

ESHESH

ESHESH

equationseqular

cc ψψφ

SS

HH
E

ESHESHif

SS

HH
E

ESHESHif

ab

abaa

ababaaaa

ab

abaa

ababaaaa

−
−

=
−
−

=

−=−
+
+

=
+
+

=

−−=−

11

11

)(

2

1

βα

βα



)2(0)()(

)1(0)()(
1

=−+−
=−+−

bbbbbababa

bababaaaaa

cESHcESH

cESHcESH

equationsequlartoEngsubstituti

)(

0

0)()(

0))()1(())()1((

0))()1(())()1((

0)
1

()
1

(

1

1 baabbaa

baba

babaaabaababaa

bababaaababaabaaabaa

bababaaababaabaaabaa

bab
ab

abaa
aba

ab

abaa
aa

bbaa

ccc

cccc

cSHHcHSH

cSHHSHcHHSH

cSHHSHcHHSH

cS
S

HH
Hc

S

HH
H

SS

ψψψψφ +=+=
==−

=−+−
=/+−/+++/−+/
=+−+++−+

=
+
+

−+
+
+

−

==

)(
)1(2

1

)1(2

1

1)1(2

1]2[

1)())((

1

1

2

22222

*

1
*

1

ba

ab

ab

a

aba

babaaaa

baabaa

S

S
c

Sc

dccc

dcc

conditiononnomalizati

ψψφ

τψψψψ

τψψψψ

φφ

+
+

=

+
=∴

=+

=++

=++

=

∫
∫

∫

)(
)1(2

1

)(

0

2

2

2

ba

ab

baabbaa

baba

S

ccc

cccc

equationsequlartoEngsubstituti

ψψφ

ψψψψφ

−
−

=

−=+=
−==+



S
E

+
+

=
11

βα

S
E

−
−

=
12

βα

)(
)1(2

1

)(
)1(2

1

ba

ab

b

ba

ab

a

S

S

ψψφ

ψψφ

−
−

=

+
+

=
+

+ -

Can we deduce the ca and cb from the molecular 
symmetry?
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H2
+

The calculated and 
experimental molecular 
potential energy curves 
for a hydrogen 
molecule-ion.
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Molecular Orbital Theory H2
+

A representation of the 
constructive interference 
that occurs when two H 1s
orbitals overlap and form a 
bonding σ orbital. 
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Molecular Orbital Theory H2
+

The electron density calculated 
by forming the square of the 
wavefunction. 
Note the accumulation 
of electron density in the
internuclear region.
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Molecular Orbital Theory H2
+

A representation of the 
destructive interference 
that occurs when two H1s
orbitals overlap and form an
antibonding σ* orbital. 
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Molecular Orbital Theory H2
+

The electron density calculated 
by forming the square of the 
Wavefunction. Note the 
elimination of electron density 
from the internuclear region.
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A molecular orbital energy 
level diagram for orbitals 
constructed from the overlap 
of H1s orbitals; the separation
of the levels corresponds to
that found at the equilibrium 
bond length. 
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§2 Molecular orbital theory and diatomic molecules

1. Molecular orbital  theory

a.  Every electron in a molecule is in an average potential field of 
the nuclei and the other electrons.

The state of electron i is described by the ψi wavefunction.

------- the one-electron wavefunction
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b. The formation of molecular orbital (MO).

The MO may be approximated from the linear combination of
atomic orbitals (LCAO).

Three basic requirements in the formation of MO:

The AOs should 

* have comparable energy,

* have compatible symmetry,

* be able to have maximum overlap.        
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Why should the AOs should have comparable energy?

b. The formation of molecular orbital (MO).

The MO may be approximated from the linear combination of
atomic orbitals (LCAO).

Three basic requirements in the formation of MO:

* The AOs should have comparable energy, have 
compatible symmetry and be able to have maximum overlap.        

The building-up principle in molecules:

Pauli exclusion principle, the minimum energy 
priciple and Hund’s rule.
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2. The characteristic distribution and classification of molecular orbital

a.  σ-orbital and σ-bond
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2. The characteristic distribution and classification of molecular orbital

b.  π-orbital and π-bond

2. The characteristic distribution and classification of molecular orbital

c.  δ-orbital and δ-bond



3. The structure of homonuclear diatomic molecules

a. The ground state electronic configurations
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For oxygen and fluorine, 2p 
and 2s are well separated.



Molecular Orbital Theory

N2:  KK(1σg)
2 (1σu)2 (1πu)4
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2p

2p

2σg

2σ*u
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HOMO

LUMO

The effect of interactions 
between 2s and 2p. 

At the start of the second 
row Li-N, we have mixing 
of 2s and 2p. The result is 
that 1σu* is pushed down 
in energy whereas 2σg is 
raised.

B2:  KK(1σg)
2 (1σu)2 (1πu)2

H2 2 (σg1S)2 

He2
+ 3 (σg1s)

2 (σu1s)
1 

Li2 6 KK(1σg)
2 

B2 10 KK(1σg)
2 (1σu)

2 (1πu)
2 

C2 12 KK(1σg)
2 (1σu)

2 (1πu)
4 

N2
+ 13 KK(1σg)

2 (1σu)
2 (1πu)

4 (2σg)
1 

N2 14 KK(1σg)
2 (1σu)

2 (1πu)
4 (2σg)

2  

O2
+ 15 KK(σg2s)

2 (σu2s)
2 (σg2p)

2 (πu2p)4 (πg2p)1 

O2 16 KK(σg2s)
2 (σu2s)

2 (σg2p)
2 (πu2p)4 (πg2p)
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F2 18 KK(σg2s)
2 (σu2s)

2 (σg2p)
2 (πu2p)4 (πg2p)
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Electronic configurations

2s-2pz mixing



3. The structure of homonuclear diatomic molecules

b. The bond order

Bond orders :

b =
1
2

(n −n* )

n: Electrons in bonding orbitals
n*:Electrons in antibonding orbitals

Diatomics

n/a155494941609289n/a105Bond Energy (kJ/mol)

Diamagnetic (d)/ Paramagnetic (p)

Bond Length (Å)

Bond Order

Molecule

n/a

n/a

0

Ne2

d

1.42

1

F2

p

1.21

2

O2

ddpn/ad

1.011.241.59n/a2.67

32101

N2C2B2Be2Li2

Bond orders :

b =
1
2

(n −n* )

2s-2pz mixing



3. The structure of homonuclear diatomic molecules

c. The molecular spectroscopy - term

Molecular Orbital Theory Diatomics Term    symbols    

H2
+

Molecule     Configuration             Term symbol    

(1σg)1 2Σg
+

2ST +1

SYM(Lz)

Spin multiplicity  

Σ   Π     Δ

LTz :     0    1    2

Parity

Reflection    



Molecular Orbital Theory Diatomics Term    symbols    

H2

Molecule     Configuration             Term symbol    

(1σg)2 1Σg
+

2ST +1

SYM(Lz)

Spin multiplicity  

Σ   Π     Δ

LTz :     0    1    2

Parity

Reflection    

H2
− (1σg)2(1σu)1 2Σu

+

He2 (1σg)2(1σu)2 1Σg
+

Li2 (1σg)2(1σu)2(2σg)2 1Σg
+

1σg1s +1s

1σu1s −1s

2σg2s + 2s

2σu2s − 2s

Be2 (1σg)2(1σu)2(2σg)2(2σu)2 1Σg
+

Molecular Orbital Theory Diatomics Term    symbols    

2ST +1

SYM(Lz)

Spin multiplicity  

Σ   Π     Δ

LTz :     0    1    2

Parity

Reflection    

Molecule     Configuration             Term symbol    

B2 (1πu)2

C2 (1πu)4

3Σg
− 1Δg

+ 1Σg
+

N2
+ (3σg )1(1πu)4

N2 (3σg)2(1πu)4 1Σg
+

1Σg
+

2Σg
+

1πu

3σg



Molecular Orbital Theory Diatomics Term    symbols    

2ST +1

SYM(Lz)

Spin multiplicity  

Σ   Π     Δ

LTz :     0    1    2

Parity

Reflection    

Molecule     Configuration             Term symbol    

3σg

1πu

3σu

1πgN2
− (3σg)2(1πu)4(1πg)1 2Πg

− 2Πg
+

O2 (3σg)2(1πu)4(1πg)2
3Σg

− 1Δg
+ 1Σg

−

F2 (3σg)2(1πu)4(1πg)4 +Σg
1

4. The structure of hetronuclear diatomic molecules



MO Theory for Heteronuclear Diatomics
• MO’s will no longer contain equal contributions from each AO.

– AO’s interact if symmetries are compatible.

– AO’s interact if energies are close.

– No interaction will occur if energies are too far apart.  A 
nonbonding orbital will form.

ΨY makes a greater 
contribution to the 
ΨMO

ΨX makes a 
greater 
contribution to 
the Ψ∗

MO

Example: HF
• The F (2s) is much lower in 

energy than the H (1s) so they do 
not mix. 
– The F (2s) orbital makes a 

non-bonding MO.
– We certainly don’t have to 

worry about the F (1s) 
because is MUCH lower in 
energy.

• The H (1s) and F (2p)’s are close 
in energy and do interact.
– The 2px and 2py don’t have 

the appropriate symmetry 
though and therefore form 
nonbonding MO’S

– Only the 2pz and 1s mix.
K(2σ)2 (3σ)2 (1π)4



Isoelectronic rule: 

The MO’s bond formation 
and electronic configurations 
are similar among the 
isoelectronic diatomic 
molecules.

CO is isoelectronic with N2.

KK(3σ)2 (4σ)2 (1π)4 (5σ)2

electronic configurations of NO

LiH 4 K(2σ)2 1Σ+

BeH 5 K(2σ)2 (3σ)1 2Σ+

CH 7 K(2σ)2 (3σ)2 (1π)1 2Π

NH 8 K(2σ)2 (3σ)2 (1π)2 3Σ—

OH 9 K(2σ)2 (3σ)2 (1π)3 2Π

HF 10 K(2σ)2 (3σ)2 (1π)4 1Σ+

BeO , BN 12 KK(3σ)2 (4σ)2 (1π)4 1Σ+

CN ,
BeF

13 KK(3σ)2 (4σ)2 (1π)4 (5σ)1 2Σ+

CO 14 KK(3σ)2 (4σ)2 (1π)4 (5σ)2 1Σ+

NO 15 KK(3σ)2 (4σ)2 (1π)4 (5σ)2 (2π)1 2Π

Molecule   electrons         electronic configuration     term



§3 Valence bond(VB)  theory for the hydrogen molecule and 
the  comparison VB theory with Molecular Orbital theory(MO)

In valence bond(VB)  theory we localized one 
electron to each.

orBA

e1 e2

BA

e2 e1

The Heitler-London treatment:
f1=A(1)B(2)                   f2=A(2)B(1)

The trial variation function:
Ψ=c1f1+ c2f1 =c1A(1)B(2) +c2A(2)B(1)

   )]2()1()2()1([)]1(A(2))2(N[A(1)=(1,2)VB αββα −×+Ψ BB
We have the valence bond wavefunction   

In molecular orbital (MO)  theory each electron 
moves over the whole molecule. 

BA BAand

e1
e2

Both electrons can be on the same nuclei

The unnormalized LCAO-MO wave function for the H2 
ground state is:

   )]2()1()2()1([)]2(+A(2))][1(+N[A(1)=(1,2)MO αββα −×Ψ BB

  )1(A(2)+(2))1()2()1(+A(1)A(2) BBABB +

H-H+ H+H-
Covalent terms   



Comparison of MO and VB theories
VB TheoryVB Theory
• Separate atoms are brought 

together to form molecules.
• The electrons in the molecule pair

to accumulate density in the 
internuclear region.

• The accumulated electron density 
“holds” the molecule together.

• Electrons are localized (belong to 
specific bonds).

• Hybridization of atomic orbitals
• Basis of Lewis structures, 

resonance, and hybridization.
• Good theory for predicting 

molecular structure.

Molecular orbital theoryMolecular orbital theory
• Molecular orbitals are formed 

by the overlap and interaction 
of atomic orbitals.

• Electrons then fill the molecular 
orbitals according to the aufbau
principle.

• Electrons are delocalized (don’t 
belong to particular bonds, but 
are spread throughout the 
molecule).

• Can give accurate bond 
dissociation energies if the 
model combines enough atomic 
orbitals  to form molecular 
orbitals.


