Chapter 4 The structure of diatomic molecules
8 1 Treatment of variation method for the H,* ion
1. Shroedinger equation of H,*

Born-Oppenheimer Approximation

e The electrons are much lighter than the
nuclei.

e Nuclear motion is slow relative to the
electron motion.

The hamiltonian oper ator

Where r, and 1, are related by :

r,=4/r,  + R*—2r,Rcosé

Shroedinger equation of H,"

Molecular Orbital Theory
We could now solve: H(r,,R)y(r,,R) = E.(R)w(r,,R)

This 1s possible but tedious

H," can be solved exactly using confocal elliptical coordinates:

¢ = ()R

M = (r,-1,)/R
¢ 1s a rotation around z

¢ < 2m;
g < o0

1<n<l1




Welec = F(‘i,ﬂ) (27t)_1/2 eim(l)
where m=0, 1, +£2, £3,

The associated quantum number is A. = orbital angular momentum
A =|m|
Each electronic level with m #0 is doubly degenerate, i.e. + |m|,-|m|

atoms: ¢ =0,1,2,... and the atomic orbitals are called: s,p,d, etc.

diatomics: A =0,1,2, ... and the molecular orbitals are: o, 7, J, etc.

A O |1 |2 |3 |4
letter G |m |0 |O

Welec - F(E.wn) (271:)-1/2 eimd)

A
letter




2. The Variation Theorem

For any well-behaved wavefunction ¢, the average energy from
the Hamiltonian of the system is always greater or close to the
exact ground state energy (E,) for that Hamiltonian,

Example: Devise a trial variation function for the particle in a
one-dimensional box of length 1.

A simple function that has the
properties of the ground state
IS the parabolic function:

Q= x(l —X) for 0<x <

_ 5h?
47z2ml 2 8ml 2
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Proof

The Eigenfunctions of an
¢(¢>E,) its ground state (v, > E,)

Hermitian operator consist
of a complete set. y;
V5 ...consist of an
orthogonal normalized set
of wavefunctions

J
9 :Z jc:|”
I¢*ﬁ¢dT:IZ Ci*l//i*l-iZ le//jdrzz Ci*z ij. '//i*H‘//de
i J [ J

=2 2 cich' v, Eywde=2 > cichjj V’i*‘//de:Z|Ci|2Ej
i j j i

n 1s a linear combination of
g=cf +c,f,+..+c.f = ZCJ' I n linearly independent
j=l functions f,, f,, ...f .

Based on this principle, the parameters
are regulated by the minimization routine so
as to obtain the wavefunction that
corresponds to the minimum energy. Thisis
taken to be the wavefunction that closely
approximates the ground state.

adjusting the parameter,




J¢*¢d7 = J(QW +C,0,) (Cy, + Gy, )T
= [ @ vw ooy v, +aow v + 6%y, vy )dr
= I (C12W1*W1 + 2C1C2W1*l//2 + 0229”2*1//2)(:17

=07 +260,S, +¢) (S =] viv,de=s))

=G'S,+26G,S, +6,'S,, (S,=S,=0

[¢ Agdz = [ (e, +op,) A ey, +cy)de

= [ @ ’w Ay +ccp Hy, +ccp, Hy, +6°w, Hy,)de

=¢ H,, +2¢C,H,, +¢,°H,, (Hy=H, =[ »'Hy)
(H,=H,=1)

&= CIZH11+20102H12+022H22 —
2 2

Cl Sl+2CICZSIZ+CZ 822

make &= E,

:88:lay_l(3x
oc, xoc X oc

1
:;(2C1H11 +2CzH12)_X_)£(2C131 +2Cz$2)

let

2 2
C1 |2_|11-|_2C1C2H12+C22 H22 (2CISII+2CZSZ):O
Cl 31+201C232+Cz Szz

(2¢H,, +2¢,H,,)-E(2¢ S, +2¢,§,)=0

(¢H, +c,H,,)-E(¢S,+¢,S,)=0

(H,,-ES,)¢ +(H,-ES,)c, =0

same
o€

~ac,

(H, —ES,))c +(H, —ES,,)c, =0 (2)

(2C1H11 +202H12)_

as
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seqular eguation

made eguation resolved(c,,c, # 0)
H11_E31 le_E32 —0

Hzl_ESn sz_ESzz

get E = get C,,C, = get

The algebraic equation has 2 roots, E, and E,.

P=Cy, +Cy, +..+Cy,

Hll_ESI le_ESﬂz Hln_ESn
Hzl_ESzl sz_ESzz

H nl ESnl H n2 ESnz

The algebraic equation has nroots, which can be shown to be real.
Arranging these roots in order of increasing value: E,< E,<... <E .

* From the variation theorem, we know that the lowest value of root
(W) is the upper bound for the system’s ground-state energy.

E,<W,

*Moreover, it can be proved that the linear variation method
provides upper bounds to the energies of the lowest n states of the
system.

E,<W, Ex<W; ...,E <W_

* We use the roots as approximations to the energies of the lowest
states.

« I[f approximation to the energies of more states are wanted, we
add more functions f, to the trial function ¢.

 The addition of more functions f,_can be shown to increase the
accuracy of the previously calculated energies.




3. The solution of

For Hé’ that is :

Note: we have as many linear combinations
as we have atomic orbitals
¢ — CaWa T wa b Trial functions

¢ =CW, +C¥,

seqular eguation
H.-ES, H_,-ES,
‘Hba _ ESoa be _ Esob
"y, has the same form as y/,,
(H,-ES,)’ =(H,-ES,)’
H, -ES, =x(H_ —-ES,)




substituting E, to seqular eguation
(Haa_ESaa)Ca+(Hab_ESab)Cb:0 (1)
Hpa — ESL)C +(Hy, —ES,)C, =0 (2)

S.=5,=1

H,+H, H_,+H
(Ha - 145, —2 )¢ +(H f:—sa:bsab)cb:
(Ha(1+S,)—(Hy +Hyp))e, +(H (14 Sy) —(Hpy + H ) S,)6, =0
(Haa(I+Sy)— (M + Hp))Cy +(Hpy 14+ 5,) —(H i, + A 4,)S,, )6, =0
(HaaSy —Hap)C +(Hy —H,.5,)6, =0
Ca_Cb:O C.=6G
O = Caa + Gy, = Co(Wa +¥y)

nomalization  condition I ¢ ¢ =1

[ Cwa+ry)) cw.+p)dr =1
[ [elw +2¢ vy, +¢p, dr =1

2¢,°(1+S,)=1
1

%= hirsy)

1

¢1 :\/m('ﬂa"_yjb)

substituting E, to seqular equation
Ca + Cb =0 Ca - _Cb
¢2 =CW, TGy, = Ca(Wa A

1
W)

¢2=\/m(l//a_




Can we deduce the c, and ¢, from the molecular
symmetry?




resonance integral

S, =

H,.=E,+J=E =«
H,=E,S,+K=p
H.,+H,

B RS
m_Hm
=T

E,+J+E, S, +K

E =
1+ S,

J-K
E,.=E, +
2 H I—S




Experimental

Calculated
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Energy (E. — Eyio)/Ry

The calculated and
experimental molecular
potential energy curves
for a hydrogen
molecule-ion.

Molecular Orbital Theory

Region of
constructive
interference

H;

A representation of the
constructive interference
that occurs when two H 1s
orbitals overlap and form a
bonding o orbital.




Molecular Orbital Theory

L
i
210+9 7 T2a+9)”

p(l) =

Molecular Orbital Theory

Region of
destructive
interference

H;

The electron density calculated
by forming the square of the
wavefunction.

Note the accumulation

of electron density in the
internuclear region.

2
AL

2(1 N S) l//al//b

A representation of the
destructive interference

that occurs when two H1s
orbitals overlap and form an
antibonding o* orbital.




Molecular Orbital Theory

The electron density calculated
by forming the square of the
Wavefunction. Note the
elimination of electron density
from the internuclear region.

1 2 1 2 1

+ -2
20-9) " " 21-5)"" “21-5 """

p() =

A molecular orbital energy
level diagram for orbitals
constructed from the overlap
of H1s orbitals; the separation
of the levels corresponds to
that found at the equilibrium
bond length.




{ 2 Molecular orbital theory and diatomic molecules
1. Molecular orbital theory

a. Every electron in a molecule is in an average potential field of
the nuclei and the other electrons.

The state of electron 1 1s described by the y; wavefunction.

the one-electron wavefunction

(0(1,2,...”) — Wl (DWZ (2)Wn (n)
H=SH,

I:Ii'//i =Ry,

b. The formation of molecular orbital (MO).

The MO may be approximated from the linear combination of
atomic orbitals (LCAO).

Three basic requirements in the formation of MO:
The AOs should
* have comparable energy,
* have compatible symmetry,

* be able to have maximum overlap.




Why should the AOs should have compar able energy?
¢:Cal//a+cb'7”b

seqular eguation

H.-ES., H,-ES, 0

Hba - ESDa be _ ESob

if H_ =E,H,=E,H,=45S,=0

E =§[(Ea +E) (B, —E,) +44]
E, =%[<Ea +E) (B —E.) +4/°]

(Ey-E)>>IB]  => E\=E,, E,~E,

Ey=E, => E;=E-| B|, E,~E, | B

b. The formation of molecular orbital (MO).

The MO may be approximated from the linear combination of
atomic orbitals (LCAO).

Three basic requirements in the formation of MO:

* The AOs should have comparable energy, have
compatible symmetry and be able to have maximum overlap.

The building-up principle in molecules:

Pauli exclusion principle, the minimum energy
priciple and Hund’s rule.




2. The characteristic distribution and classification of molecular orbital

a. o-orbital and o-bond
s s o!.?

o o el o -
do g0 Op* a0




2. The characteristic distribution and classification of molecular orbital

b. m-orbital and -bond

2. The characteristic distribution and classification of molecular orbital

c. o-orbital and 6-bond




3. The structure of homonuclear diatomic molecules

a. The ground state electronic configurations

For oxygen and fluorine, 2p
and 2s are well separated.

0,: KK(G,,)* (07, (T ,,)?

(T,)* ()

F,: KK(0,,)*(G™,,) ((5210)2

(T,) (T,




Molecular Orbital Theory

B B,

[ — 20*

The effect of interactions
between 2sand 2p.

At the start of the second

row Li-N, we have mixing
of 2sand 2p. Theresult is
that 1c,* is pushed down

in energy whereas 2 is

raised.

B,: KK(1oy)?(10,)?(1m )

N,: KK(1oy)?(10,)? (1m,)*
(20,)°

Electronic configurations

2s-2p, mixing

(Ggls)2
He,” 3 (Ggls)z (Gu1s)'
Li, [6 [KK(loy)’
B, |10 [KK(loy)’(loy)’ (1m,)’
C, |12 [KK(lop)’ (lo,)’ (Im,)*
N," |13 [KK(lop)’ (16,)° (1m,)" (20,)'
N, [14 [KK(loy)’ (16,)’ (1m)* (26,)°
0, (15 [KK(0gps)’ (0129 (Og2p)” (Tuzp)” ()’
0, |16 [KK(042)” (0u2s)” (0g2p)” (muzp)” (ezp)’
Fo o [18 [KK(042:)” (6u2s)” (0g2p)” (muzp)” (azp)’




3. The structure of homonuclear diatomic molecules

b. The bond order

Bond orders:

1 .
b=—-(n—-n
,(n-n")

n: Electrons in bonding orbitals
n*:Electrons in antibonding orbitals

Bond orders:

1 .
b=—-(h—-n
,(n-n’)

Molecule

Bond Order

Bond Length (A)

Bond Energy (kJ/mol)

Diamagnetic (d)/ Paramagnetic (p)




3. The structure of homonuclear diatomic molecules

c. The molecular spectroscopy - term

Molecular Orbital Theory@Diatomics@MTerm symbols
Molecule | Term symbol

H} (log)’

Spin multiplicity
LZ g 0o 1 2




Molecular Orbital Theory@Diatomics@lTerm symbols

Molecule Configuration Term symbol
iz (1og)” 5 QO =4+
_ 2 1 2 .+ 28-2S 20y
Ho (log)“(loy) Zu

OO ==
Heo (log)?(loy)? 'ss  2s+2s29g

1 2 2 2 1<+ OO
Lis (log)(loy)“(20¢) Xg 1s-1s Toy
Bes (16.)2(10. (2602 (20 )2 tor (S P
(log)”(loy)™(209)~(20y) 9 1e.1s log

I Spin multiplicity ) ST +1

Lt,: 0 1 2 SYM(L;)

> I A

Reflection

Parity

Molecular Orbital Theory@Diatomics@lTerm symbols

Molecule Configuration Term symbol

3¢— 1+ 1¢+
B, (Imy)” Zg Ag Zg
C 4 1t
2 (Iny) P eoC0 =+ 3,
1 4 2
NI  (3og) (Imy) s DO
88 T = 17,
N,  (Bog)?(1ny)* bt

Spin multiplicity P

Lt,: 0 1 2 SYM(L)

> I A

Reflection

Parity




Molecular Orbital Theory@Diatomics@Term symbols

o0 O —

Molecule Configuration Term symbol 3oy
N2 (3og)(imy)(ing)!  2mg “I1§ 8 8?‘1‘ g_g
3¢— 1+ 1y=
O, (3og)°(Iny)*(lng)® “Zg Ag Zg %@
Fy (3og)’(ny)*(ing)*  'x¢ 8%#
2 g)( u)( 9) 2 g Ty
O QD ==
30¢

Spin multiplicity P

Lr,: 0 1 2 SYM(Lz)

> IT A

Reflection

Parity

4. The structure of hetronuclear diatomic molecules




MO Theory for Heteronuclear Diatomics

e MO'’s will no longer contain equal contributions from each AO.

— AOQO’s interact if symmetries are compatible.

— AOQ's interact if energies are close.

— No interaction will occur if energies are too far apart. A

nonbonding orbital will form.

¥, makes a
greater
contribution to
the ¥*,,o

Example: HF

The F (2s) is much lower in
energy than the H (1s) so they do
not mix.

— The F (2s) orbital makes a
non-bonding MO.

— We certainly don'’t have to
worry about the F (1s)
because is MUCH lower in
energy.

The H (1s) and F (2p)’s are close
in energy and do interact.
— The 2px and 2py don’t have
the appropriate symmetry

though and therefore form
nonbonding MO’S

— Only the 2pz and 1s mix.

¥, makes a greater
contribution to the
\PMO

Non-bonding

o

ag

K@oy@oyam)




| soelectronicrule;

The MO’s bond formation
and electronic configurations
are similar among the
isoelectronic diatomic
molecules.

CO isisoelectronic with N..

KK(30)*(40)(1m)*(50)

electronic configurations of NO

Molecule electrons electronic configuration
K20 )?

K20 )(30)
K@QoR@op(n)
K20 )2(30 ) (1)
KQoR@Go)2(n)
K20 )2(30)2(1 )
KK(3o0)*(4o)>(1n)*

KK(3 o2 (@40) (1) (50)
KK(3 0 Y (40)2 (1) (50)?

KK@B o)y (4oy(dn)yGoy@n)




{ 3 Valence bond(VB) theory for the hydrogen molecule and
the comparison VB theory with Molecular Orbital theory(MO)

In valence bond(VB) theory welocalized one
electron to each.

ed- @D

€ € 57 €
The Heitler-London treatment:
f,=A(1)B(2) f,=A(2)B(1)
Thetrial variation function:
¥=c,f,+ c,f; =c;,A(1)B(2) +c,A(2)B(1)
We have the valence bond wavefunction
Y (1,2)ys = N[A(DB(2)+A2)B)]x[a(D) S(2) - f(Da(2)]

In molecular orbital (MO) theory each electron
moves over the whole molecule.

.

Both electrons can be on the same nuclei

Theunnormalized L CAO-M O wave function for theH2
ground stateis:

¥(1,2)y0 = N[A(D) + BDI[AQ2)+B2)]x[a(1) 5(2) - f(Da(2)]

A(DHA®2)+B(1)B(2)+ A1)B(2)+ A(2)B(1)

M+ +]- —
HH H*H Covalent terms




Comparison of MO and VB theories

VB Theory Molecular orbital theory

e Separate atoms are brought .

together to form molecules.

The electrons in the molecule pair

to accumulate density in the
internuclear region.

The accumulated electron density
“holds” the molecule together.

Electrons are localized (belong to
specific bonds).

Hybridization of atomic orbitals

Basis of Lewis structures,
resonance, and hybridization.

Good theory for predicting
molecular structure.

Molecular orbitals are formed
by the overlap and interaction
of atomic orbitals.

Electrons then fill the molecular
orbitals according to the aufbau
principle.

Electrons are delocalized (don't
belong to particular bonds, but
are spread throughout the
molecule).

Can give accurate bond
dissociation energies if the
model combines enough atomic
orbitals to form molecular
orbitals.




