Chapter 5 Stucture of polyatomic molecules (A)

§ 5.1 Theory of hybrid orbital and atomic orbital hybridization

1. Theory of hybrid orbital

Two Theories of Bonding

MOLECULAR ORBITAL THEORY

- valence electrons are delocalized
- valence electrons spread over entire molecule.

VALENCE BOND THEORY

- valence electrons are localized between atoms (or are lone pairs).
- half-filled atomic orbitals overlap to form bonds.

Central Themes of Valence Bond Theory

Basic Principle of Valence Bond Theory: a covalent bond forms when the orbitals from two atoms overlap and a pair of electrons occupies the region between the nuclei.

Opposing spins of the electron pair.
 Maximum overlap of bonding orbitals.
 <u>Hybridization of atomic orbitals.</u>

Pauling proposed that *the valence atomic orbitals in the molecule are different from those in the isolated atoms.* We call this **Hybridization!**

H_2O

Each σ bond arises from the overlap of an H1s orbital with one of the O2p orbitals. This model suggests that the bond angle should be 90°, which is significantly different from the experimental value.

Why do atomic orbital need hybridization?

 CH_4

- Carbon has four valence electrons four electrons that are typically involved in bond formation.
- For carbon atoms bonded to four other atoms, experimental evidence suggested that all of the bonds have similar molecular orbitals.

b. How do atomic orbital hybridize?

 $\phi_h = c_1 \phi_{2s} + c_2 \phi_{2px} + c_3 \phi_{2py} + c_4 \phi_{2pz}$

If we begin with *n* AO's, we must end up with *n* orbitals after hybridization.

All *n* hybrids are equivalent except for directionality \rightarrow same energy.

2. Construction of hybrid orbitals

a. sp hybridization (linear species)

• One s and one p AO mix to form a set of two hybrid orbitals.

b. sp² hybridization (trigonal planar)

 One s and two p (p_x and p_y) AO's mix to form a set of three hybrid orbitals.

$$\phi_{h1} = \sqrt{\frac{1}{3}}\phi_s + \sqrt{\frac{2}{3}}\phi_{2px}$$

$$\phi_{h2} = \sqrt{\frac{1}{3}}\phi_s - \sqrt{\frac{1}{6}}\phi_{2px} + \sqrt{\frac{1}{2}}\phi_{2py}$$

$$\phi_{h3} = \sqrt{\frac{1}{3}}\phi_s - \sqrt{\frac{1}{6}}\phi_{2px} - \sqrt{\frac{1}{2}}\phi_{2py}$$

sp², D_{3h}, θ =120°, triangular, f=1.991, α =1/3

$$\phi_{hi} = a_i \phi_s + b_i \phi_{2px} + c_i \phi_{2py}$$

For equivalent hybridization: the weighting of s orbital in each hybrid orbital is 1/3, and therefore

$$\phi_{hi} = \sqrt{1/3} \phi_s + b_i \phi_{2px} + c_i \phi_{2py}$$

Supposed ϕ_{h1} is parallel to the x-axis and is perpendicular to the y-axis.

Normalization

$$\phi_{h1} = \sqrt{1/3}\phi_s + b_i\phi_{2\,px}$$

$$\phi_{h1} = \sqrt{1/3}\phi_s + \sqrt{2/3}\phi_{2\,px}$$

 $\phi_{h1} = \sqrt{1/3}\phi_s + \sqrt{2/3}\phi_{2px}$ $\phi_{hi} = \sqrt{1/3}\phi_s + b_i\phi_{2px} + c_i\phi_{2py}$ Normalization and orthogonality $a_2^2 + b_2^2 + c_2^2 = 1$ $a_1a_2 + b_1b_2 + c_1c_2 = 0$ $b_2 = -\sqrt{1/6}$ $c_2 = \pm\sqrt{1/2}$ $\phi_{h2} = \sqrt{1/3}\phi_s - \sqrt{1/6}\phi_{2px} + \sqrt{1/2}\phi_{2py}$ $\phi_{h3} = \sqrt{1/3}\phi_s - \sqrt{1/6}\phi_{2px} - \sqrt{1/2}\phi_{2py}$

d. dsp³ (sp³d) hybrides (bipyramidal)

e. dsp² hybrides (square planar) $d_{x^{2}-y^{2}}, s, p_{x}, p_{y}$ $\phi_{h1} = \frac{1}{2}\phi_{s} + \sqrt{\frac{1}{2}}\phi_{px} + \frac{1}{2}d_{x^{2}-y^{2}}$ $\phi_{h2} = \frac{1}{2}\phi_{s} - \sqrt{\frac{1}{2}}\phi_{px} + \frac{1}{2}d_{x^{2}-y^{2}}$ $\phi_{h3} = \frac{1}{2}\phi_{s} + \sqrt{\frac{1}{2}}\phi_{py} - \frac{1}{2}d_{x^{2}-y^{2}}$ $\phi_{h4} = \frac{1}{2}\phi_{s} - \sqrt{\frac{1}{2}}\phi_{py} - \frac{1}{2}d_{x^{2}-y^{2}}$

Eg. Ni(CN)₄²⁻

f. d²sp³ (sp³d²) hybrides (Octahedral)

$$bc_{1} = \frac{1}{\sqrt{6}}s + \sqrt{\frac{1}{2}}p_{x} + \frac{1}{2}d_{x^{2}-y^{2}} - \frac{1}{\sqrt{12}}d_{z^{2}}$$

$$bc_{2} = \frac{1}{\sqrt{6}}s + \sqrt{\frac{1}{2}}p_{y} - \frac{1}{2}d_{x^{2}-y^{2}} - \frac{1}{\sqrt{12}}d_{z^{2}}$$

$$bc_{3} = \frac{1}{\sqrt{6}}s - \sqrt{\frac{1}{2}}p_{x} + \frac{1}{2}d_{x^{2}-y^{2}} - \frac{1}{\sqrt{12}}d_{z^{2}}$$

$$bc_{4} = \frac{1}{\sqrt{6}}s - \sqrt{\frac{1}{2}}p_{y} - \frac{1}{2}d_{x^{2}-y^{2}} - \frac{1}{\sqrt{12}}d_{z^{2}}$$

$$bc_{5} = \frac{1}{\sqrt{6}}s + \sqrt{\frac{1}{2}}p_{z} + \sqrt{\frac{1}{3}}d_{z^{2}}$$

$$bc_{6} = \frac{1}{\sqrt{6}}s - \sqrt{\frac{1}{2}}p_{z} + \sqrt{\frac{1}{3}}d_{z^{2}}$$

Hybridization schemes

spⁿd^m gives a "complete" set of hybrid orbitals for "any" geometry.

sp	linear
sp ²	trigonal planar
sp ³	tetrahedral
sp ³ d (d _z ²)	trigonal bipyramidal
$sp^{3}d(d_{x}^{2}-y^{2})$	square-based pyramidal
sp ³ d ²	octahedral
sp ² d	square planar

 The angle between two hybrid orbital spⁿ hybridation

$$\phi_{h} = \sqrt{\alpha}\phi_{2s} + \sqrt{1-\alpha}\phi_{2p}$$

$$\phi_{hi} = \sqrt{\alpha_i} \phi_{2s} + \sqrt{1 - \alpha_i} \phi_{2p_i}$$
$$\phi_{hj} = \sqrt{\alpha_j} \phi_{2s} + \sqrt{1 - \alpha_j} \phi_{2p_j}$$

where ϕ_{pi} is

$$\phi_{p_i} = x_i \phi_{px} + y_i \phi_{2py} + z_i \phi_{2pz}$$

$$0 = \int \phi_{hi}\phi_{hj}d\tau = \int (\sqrt{\alpha_{i}}\phi_{2s} + \sqrt{1-\alpha_{i}}\phi_{pi})(\sqrt{\alpha_{j}}\phi_{2s} + \sqrt{1-\alpha_{j}}\phi_{pj})d\tau$$

$$= \sqrt{\alpha_{i}\alpha_{j}}\int \phi_{2s}^{2}d\tau + \sqrt{(1-\alpha_{i})(1-\alpha_{j})}\int \phi_{pi}\phi_{pj}d\tau + 0 + 0$$

$$0 = \sqrt{\alpha_{i}\alpha_{j}} + \sqrt{(1-\alpha_{i})(1-\alpha_{j})}\cos\theta_{ij}$$

$$\cos\theta_{ij} = -\frac{\sqrt{\alpha_{i}\alpha_{j}}}{\sqrt{(1-\alpha_{i})(1-\alpha_{j})}}$$

$$(\cos\theta_{ij} < 0, \ \theta_{ij} > 90^{\circ})$$

$$\alpha_{i} = \alpha_{j}$$
Equivalent hybridzation. Example: CH₄

 $\alpha_i \neq \alpha_j$ Non-equivalent hybridzation. Example: CHCl₃, CH₃Cl

For d-s-p hybridization, the angles between two hybrid orbitals can be calculated by: (where α , β and γ are the component of s, p and d orbitals)

$$\alpha + \beta \cos \theta + \gamma (\frac{3}{2} \cos^2 \theta - \frac{1}{2}) = 0$$

for d²sp³, $\alpha = \frac{1}{6}$, $\beta = \frac{1}{2}$, $\gamma = \frac{1}{3}$,
 $\frac{1}{6} + \frac{1}{2} \cos \theta + \frac{1}{3} (\frac{3}{2} \cos^2 \theta - \frac{1}{2}) = 0$
 $\cos \theta_1 = 0$, $\cos \theta_2 = -1$
 $\theta_1 = 90^\circ$, $\theta_2 = 180^\circ$

y Octahedral

5. Discussions

sp²

ex. BF₃(D_{3h}), BH₃ (D_{3h}), NO₃⁻, CO₃²⁻,

Example: BH₃

•3 sp2 hybrid orbitals each with one electron.

•This one electron pairs with the hydrogen electron.

Bend bonding

cyclo-triethyle

sp³

§ 5.2 Valence Shell Electron-Pair Repulsion (VSEPR) Model

 Quantum mechanical treatments have a number of advantages. However, the VSEPR model allows a simple qualitative prediction of molecular geometry.

VSEPR

Atom B in Ab_n lie on the surface of a sphere; electron pairs are "localized" on a sphere of smaller radius at maximum distances apart, so as to minimize overlap of different electron pairs.

- 1. Repulsion between two electron pairs is the greatest.
- 2. Repulsion between between a lone electron pair and a bonding electron pair is less.
- 3. Repulsion between two bonding pairs is the least.
- 4. π electron pair do not influence stereochemistry.

Arrangements of Maximum distance between valence shell electron pairs.

No. pairs	arrangement
2	Linear
3	Equilateral triangle
4	Tetrahedron
5	Trigonal bipyramid
6	Octahedron

Spatial Arrangements of Electron Pairs in Terminal Atoms in AB_n

Total Electron Domains	Electron-Domain Geometry	Bonding Domains	Nonb onding Domains	Molecular Geometry	Example
2 domains	Linear	2	0	B B Linear	ğ=c=ğ
3 d <i>o</i> mains	Trigonal planar	3	0	B B Trigonal planar	R. R.
	- 0 1	2	1	Bent	[v*v]

Molecular Stereochemistry

No. of pairs of e ⁻	formula	stereochemistry	point group
1	A ₂ , AB	none	$\mathbf{D}_{\infty \mathbf{h}} \mathbf{C}_{\infty \mathbf{v}}$
2	AB ₂	linear	$\mathbf{D}_{\infty \mathbf{h}}$
3	AB ₂ e ¹	bend	C _{2v}
3	AB ₃	triangular	D _{3h}
4	AB_2e^2	bend	C _{2v}
4	AB ₃ e ¹	pyramidal	C _{3v}
4	AB ₄	tetrahedral	T _d

Molecular Stereochemistry

No. of pairs of e	formula	stereochemistry	point group
5	AB ₂ e ³	linear	$\mathbf{D}_{\infty \mathbf{h}}$
5	AB ₃ e ²	T-shaped	C_{2v}
5	AB ₄ e ¹	non-planar	C _{2v}
5	AB ₅	trigonal bypyramid	D _{3h}
6	AB ₄ e ²	square planar	$\mathbf{D}_{4\mathbf{h}}$
6	AB ₅ e ¹	square pyramida	l C _{4v}
6	AB ₆	octahedral	O _h

VSEPR Example

AB ₂ e ⁰	linear	BeCl _{2(g)} , MX _{2(g)} (M = Zn, Cd, Hg), Hg ₂ Cl ₂ ,
		$M(CN)^{2}$ (M = Ag, Au)
AB ₂ e ¹	bent	NO_2 , SO_2 , SnX_2 , PbX_2
AB ₂ e ²	bent	H ₂ O, SX ₂ , SeX ₂ , TeX ₂ , CIO ₂
AB ₃ e ⁰	trigonal planar	BX₃, Gal₃, InMe₃, CR₃ ⁺
AB ₃ e ¹	pyramidal	NH3, NR3, NX3, PX3, AsX3, SbX3, SO32-
AB ₃ e ²	T-shaped	CIF ₃ , BrF ₃ , PhICl ₂
AB₄e ⁰	tetrahedral	BeX4 ²⁻ , BX4 ⁻ , CR4, CX4, NH4 ⁺ , NR4 ⁺ , AsR4 ⁺ ,
		MX4 (M = Si, Ge, Sn, Pb, Ti, Zr, Hf, Th),
		MX_4^{2-} (M = Zn, Cd, Hg)
AB ₄ e ¹	distorted tetrahedral	SF ₄ , SCl ₄ , SeF ₄ , SeCl ₄ , R ₂ SeCl ₂ , R ₂ TeCl ₂
AB ₄ e ²	planar	ICl ₄ ⁻ , BrF ₄ ⁻ , XeF ₄
AB5e	trigonal bipyramidal	PF ₅ , PCI ₅ , SbCI ₅ ,; MCI _{5(g)} , M(OR) _{5(g)} (M = Nb, Ta)
AB ₅ e ¹	square pyramidal	CIF ₅ , BrF ₅ , IF ₅
AB ₆ e ⁰	octahedral	SF ₆ , SeF ₆ , MoF ₆ , WCI ₆ , WMe ₆ , PF ₆ ⁻ ,
		PCI6 ⁻ , SiF6 ²⁻ , SnCI6 ²⁻ , Mn(OH)6 ²⁺ , Fe(OH ₂)6 ³⁺ , FeF6 ³⁻

§ 5.3 Hückel molecular orbital theory and conjugated system

§ 3 Huckel molecular orbital theory and conjugated system

1. HMO method

(3

$$(1)\psi = \sum_{i} c_{i}\phi_{i}$$

$$(2)E = \int \psi * \hat{H}\psi d\tau$$

$$(3)\frac{\partial E}{\partial c_{1}} = \frac{\partial E}{\partial c_{2}} = \dots = \frac{\partial E}{\partial c_{n}} = 0$$

$$(4)seqular \quad equation$$

$$\begin{vmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} \dots & \dots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{22} \dots & \dots & H_{2n} - ES_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} \dots & \dots & H_{nn} - ES_{nn} \\ \end{vmatrix} \begin{vmatrix} c_{1} \\ c_{2} \\ \dots \\ c_{n} \end{vmatrix} = 0$$

$$\begin{vmatrix} H_{11} - ES_{n1} & H_{n2} - ES_{n2} \dots & \dots & H_{nn} - ES_{nn} \\ H_{21} - ES_{21} & H_{22} - ES_{22} \dots & \dots & H_{2n} - ES_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} \dots & \dots & H_{2n} - ES_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} \dots & \dots & H_{nn} - ES_{nn} \\ \end{vmatrix} = 0$$

Modified Hückel molecular orbital theory (R. Hoffmann, Nobel prize)

$$H_{ii} = \int \psi_i^* \hat{H} \psi_i d\tau = \alpha$$

$$H_{ij} = \int \psi_i^* \hat{H} \psi_j d\tau = \beta \text{ (if } i = j \pm 1)$$

$$= 0 \text{ (if } i \neq j \pm 1)$$

$$= 0 \text{ (if } i = j \pm 1)$$

$$= 0 \text{ (if } i \neq j \pm 1)$$

$$\alpha - E \beta \dots 0 0$$

$$\beta \alpha - E \dots 0 0$$

$$\beta \alpha - E \dots 0 0$$

$$0 \beta \dots 0 0$$

$$\beta \alpha - E = 0$$

2. The HMO treatment for butadiene

$$H_2C=CH-CH=CH_2$$

$$\psi = c_1\phi_1 + c_2\phi_2 + c_3\phi_3 + c_4\phi_4$$
Secular equation
$$\begin{pmatrix} \alpha - E & \beta & 0 & 0 \\ \beta & \alpha - E & \beta & 0 \\ 0 & \beta & \alpha - E & \beta \\ 0 & 0 & \beta & \alpha - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = 0$$

$$\begin{vmatrix} \alpha - E & \beta & 0 & 0 \\ \beta & \alpha - E & \beta & 0 \\ 0 & \beta & \alpha - E & \beta \\ 0 & 0 & \beta & \alpha - E \end{vmatrix} = 0$$

$$let \mathbf{x} = \frac{\alpha - E}{\beta}, \quad \mathbf{E} = \alpha - \beta \mathbf{x}$$

$$\begin{vmatrix} \mathbf{x} & 1 & 0 & 0 \\ 1 & x & 1 & 0 \\ 0 & 1 & x & 1 \\ 0 & 0 & 1 & x \end{vmatrix} = 0$$

$$\frac{x^4 - 3x^2 + 1 = 0}{x_1^2 = 0.38} \quad \mathbf{x}_1 = \pm 0.618$$

$$x_2^2 = 2.62 \quad \mathbf{x}_2 = \pm 1.618$$

$$x_2^2 = 2.62 \quad \mathbf{x}_2 = \pm 1.618$$

$$x_2^2 = 2.62 \quad \mathbf{x}_2 = \pm 1.618$$

$$x_2^2 = \alpha + 0.618\beta$$

$$E_1 = \alpha + 1.618\beta$$

$$E_2 = \alpha + 0.618\beta$$

$$Bonding$$

$$E_3 = \alpha - 0.618\beta$$

$$Bonding$$

$$Anti-bonding$$

solve seqular equation :

$$c_1x + c_2 = 0$$

 $c_1 + c_2x + c_3 = 0$
 $c_2 + c_3x + c_4 = 0$
and,
 $c_1^2 + c_2^2 + c_3^2 + c_4^2 = 1$
 $E_1 = \alpha + 1.618\beta$
 $intermodel{eq:equation}$
 $substituting x = -1.618$
 $c_1 = c_4 = 0.372$
 $c_2 = c_3 = 0.602$
 $\psi_1 = 0.372\phi_1 + 0.602\phi_2 + 0.602\phi_3 + 0.372\phi_4$

Delocalized energy

$$E_{\pi} = E_{p} - E_{total} = 4\alpha - [2(\alpha + 1.618\beta) + 2(\alpha + 0.618\beta)] = -4.48\beta$$
if forms two lacalized π orbitals

$$E_{\pi} = -4\beta$$

$$E_{\pi} = -4\beta$$

$$E_{\pi} = 0.48\beta$$

3. Population analysis and molecular diagrams of conjugated system

i. Charge density --- the probability of π electrons on the ith atom

$$\rho_{i} = \sum_{k} n_{k} c_{i}^{2}(k)$$

$$\psi_{\pi}^{1} = 0.372\phi_{1} + 0.602\phi_{2} + 0.602\phi_{3} + 0.372\phi_{4}$$

$$\psi_{\pi}^{2} = 0.602\phi_{1} + 0.372\phi_{2} - 0.372\phi_{3} - 0.602\phi_{4}$$

$$\psi_{\pi}^{2} = 0.602\phi_{1} + 0.372\phi_{2} - 0.372\phi_{3} - 0.602\phi_{4}$$

$$\psi_{\pi}^{2} = 0.602\phi_{1} - 0.372\phi_{2} - 0.372\phi_{3} + 0.602\phi_{4}$$

$$\psi_{\pi}^{4} = 0.372\phi_{1} - 0.602\phi_{2} + 0.602\phi_{3} - 0.372\phi_{4}$$

$$\psi_{\pi}^{4} = 0.372\phi_{1} - 0.602\phi_{2} + 0.602\phi_{3} - 0.372\phi_{4}$$

ii. Bond order --- the strength of the bond between atoms i and j

$$p_{ij} = \sum_{k} n_k c_i(k) c_j(k)$$

 $p_{12} = 2 \times 0.372 \times 0.602 + 2 \times 0.602 \times 0.372 = 0.896 = p_{34}$ $p_{23} = 2 \times 0.602^2 + 2 \times 0.372^2 \times (-1) = 0.448$

iii. Free valence index --- the relative magnitude of the residue bonding ability of the ith atom

$$F_{i} = P_{\max} - \sum_{j=1}^{2} P_{ij}$$

$$P_{\max} = \sqrt{3}$$

$$F_{1} = \sqrt{3} - 0.896 = 0.836 = F_{4}$$

$$F_{2} = \sqrt{3} - 0.448 - 0.896 = 0.388 = F_{5}$$

Example: 1,4 addition reaction of butadiene H2C=CH-CH=CH2 + Br2 -→ BrH2C-CH=CH-CH2Br

4. The HMO treatment of cyclic conjugated polyene (C_nH_n)

§ 5.4 Delocalized molecular orbital theory

An *s* orbital and two *p* orbitals can be hybridized to form three equivalent orbitals that point towards the corners of an equilateral triangle. The remaining, unhybridized *p* orbital is perpendicular to the plane, forming the π bond.

2. Delocalized π bond

n-orbital numbers, m-electron numbers (n>2)

Conditions for the formation of delicalized π bond

i. The atoms are coplanar, with every atom contributing a p-orbital orientated in the same direction.

ii. The number of π electrons is less than twice the number of the participating p-orbitals.

A. Some Inorganic conjugated molecules

i. Linear type (AB₂ 16 valence electron) C: sp hybridization $+p_x + p_y$,

3. The conjugation effect.

i. The electrical conductivity is enhanced by the delocalization of π bond.

ii. Color. The formation of delocalized π bond increases the delocalized extent of the π electrons and causes the energy of the system to decrease.

iv. Chemical reactivity.

e.g. H2C=CH-Cl The formation of π_3^4 causes a contraction of the C-Cl bond, and reduces the lability of Cl.

5.5 Defined method of AO coefficient in molecular orbitals

5.4 Defined method of AO coefficient in molecular orbitals (AO = atomic orbital, MO = molecular orbital)

• Principle

 $C_{1}(\alpha-E)+C_{2}\beta=0$ $C_{1}\beta+C_{2}(\alpha-E)+C_{3}\beta=0$

$$C_2\beta + C_3(\alpha - E) + C_4\beta = 0$$

 $C_{k-1}\beta + C_{k}(\alpha - E) + C_{k+1}\beta = 0$

.....

$$C_{n-1}\beta + C_n(\alpha - E) = 0$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos \alpha + \cos \beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}$$
$$\cos \alpha - \cos \beta = -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$$
$$\sin \alpha + \sin \beta = 2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}$$
$$\sin \alpha - \sin \beta = 2\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$$

Examp	ole			
i) bu	tadiene (n=	=4)	sinA sin7A si	$n3A$ sin ΔA
S	$\sin 5\theta = 0$		5110 51120 51	1130 311140
θ	$36^{\circ} (m=1)$	$72^{\circ} (m = 2)$	$108^{\circ} (m=3)$	$144^{\circ} (m = 4)$
$2\cos\theta$	1.618	0.618	-0.618	-1.618
Ε	α +1.618 β	α + 0.618 β	α - 0.618 β	α – 1.618 β
$\psi_m = \lambda_m$	$\sqrt{\frac{2}{5}} (\sin \frac{m\pi}{5} \phi_1)$	$+\sin\frac{2m\pi}{5}\phi_2 + \sin\frac{2m\pi}{5}\phi_2 + \sin\frac{2m\pi}{5}\phi_2 + \sin\frac{2m\pi}{5}\phi_2 + \sin\frac{2\pi}{5}\phi_2 +$	$\sin\frac{3m\pi}{5}\phi_3 + \sin\frac{4}{5}\phi_3 $	$\frac{4m\pi}{5}\phi_4)$
	1-1,2,3,4)	$\psi_{\pi}^{1} = 0.372\phi_{1} + 0$	$0.602\phi_2 + 0.602\phi_3$	$_{3} + 0.372\phi_{4}$
		$\psi_{\pi}^{2} = 0.602\phi_{1} + 0$	$0.372\phi_2 - 0.372\phi_3$	$_{3}-0.602\phi_{4}$
		$\psi_{\pi}^2 = 0.602\phi_1 - 0.602\phi_1$	$0.372\phi_2 - 0.372\phi_3$	$_{3}+0.602\phi_{4}$
		$\psi_{\pi}^{4} = 0.372\phi_{1} - 0.0000$	$0.602\phi_2 + 0.602\phi_3$	$_{3}-0.372\phi_{4}$

For even orbitals, there are n/2 bonding orbitals and n/2 antibonding orbitals.

For odd orbitals, there are (n-1)/2 bonding orbitals, (n-1)/2 antibonding orbitals and 1 non-bonding orbitals.

The boundary condition:

$$\sin\frac{n+1}{2}\theta = 0 \qquad \Rightarrow \theta = \frac{2m}{n+1}\pi \quad (m = 1, 2, \dots, <\frac{n}{2})$$
$$E = \alpha + 2\beta \cos\frac{2m}{n+1}\pi \quad (m = 1, 2, \dots, <\frac{n}{2})$$

b. Molecules with odd carbon atoms

Symmetric:

$$cos\theta, 1, cos\theta$$

$$cos\frac{n-1}{2}\theta, cos\frac{n-3}{2}\theta$$

$$cos\frac{n-3}{2}\theta, cos\frac{n-1}{2}\theta$$
Boundary conditions:

$$cos\frac{n+1}{2}\theta = 0 \implies \theta = \frac{2m+1}{n+1}\pi \quad (m = 0, 1, 2, ..., < \frac{n}{2})$$

$$E = \alpha + 2\beta cos\frac{2m+1}{n+1}\pi \quad (m = 0, 1, 2, ..., < \frac{n}{2})$$

Boundary condition:

$$\sin\frac{n+1}{2}\theta = 0 \qquad \Rightarrow \theta = \frac{2m}{n+1}\pi \quad (m = 1, 2, \dots, <\frac{n}{2})$$
$$E = \alpha + 2\beta \cos\frac{2m}{n+1}\pi \quad (m = 1, 2, \dots, <\frac{n}{2})$$

Example:

$$\begin{aligned}
\cos 2\theta, & \cos \theta, & 1, & \cos \theta, & \cos 2\theta \\
-\sin 2\theta, & -\sin \theta, & 0, & \sin \theta, & \sin 2\theta
\end{aligned}$$
symmetric
$$\begin{aligned}
\theta &= \frac{2m+1}{5+1}\pi = \frac{2m+1}{6}\pi & (m = 0,1,2) \\
\theta &= \alpha + 2\beta \cos \frac{2m+1}{n+1}\pi & (m = 0,1,2) \\
E &= \alpha & (m = 1) & \text{non - bonding} \\
E &= \alpha - 1.732\beta & (m = 2) & \text{anti - bonding}
\end{aligned}$$

$$\begin{aligned}
\theta &= \frac{2m}{5+1}\pi & (m = 1,2) \\
\theta &= \frac{2m}{5+1}\pi & (m = 1,2) \\
E &= \alpha + \beta & (m = 1) & \text{bonding} \\
E &= \alpha - \beta & (m = 1) & \text{anti - bonding}
\end{aligned}$$

c. Cyclic conjugated molecules
Example 1: benzene ---solution I
i) symmetry
Boundary condition:
$$2\cos\theta C_k = C_{k+1} + C_{k-1}$$

$$\begin{split} \psi_4 &= N(-\phi_1 + \frac{1}{2}\phi_2 - \frac{1}{2}\phi_3 - \phi_4 - \frac{1}{2}\phi_5 + \frac{1}{2}\phi_6) \\ &= \frac{1}{\sqrt{6}}(2\phi_1 + \phi_2 - \phi_3 - 2\phi_4 - \phi_5 + \phi_6) \\ \psi_5 &= N(0 + \frac{\sqrt{3}}{2}\phi_2 - \frac{\sqrt{3}}{2}\phi_3 + 0 + \frac{\sqrt{3}}{2}\phi_5 - \frac{\sqrt{3}}{2}\phi_6) \\ &= \frac{1}{2}(\phi_2 - \phi_3 + \phi_5 - \phi_6) \\ \psi_6 &= N(-\phi_1 + \phi_2 - \phi_3 + \phi_4 - \phi_5 + \phi_6) \\ &= \frac{1}{\sqrt{6}}(\phi_1 - \phi_2 + \phi_3 - \phi_4 + \phi_5 - \phi_6) \end{split}$$

$$\alpha - 2\beta$$

$$\alpha - \beta$$

$$\alpha - \beta$$

$$\alpha + \beta$$

$$\alpha + 2\beta$$

§ 5 The symmetry of molecular orbital and symmetry rules for molecular reactions

- § 5 The symmetry of molecular orbital and symmetry rules for molecular reactions
- 1. Frontier molecular orbitals (1951)
 - We need to consider only two molecular orbitals, the HOMO and LUMO, to predict the structure of the product; called frontier MO's
 - Highest occupied molecular orbital (HOMO)
 - Lowest unoccupied molecular orbital (LUMO)

•A deeper understanding of chemical reactivity can be gained by focusing on the *frontier orbitals* of the reactants.

Reaction condition

- 1. During the course of a chemical reaction, the orbitals that are most readily accessible for interaction are the frontier orbitals. When two molecules approach each other, the symmetry of the HOMO of one molecule must be compatible with that of the LUMO of the other molecule, i.e. orbitals with the same sign will overlap. This forms a transition state which is relatively stable and is a symmetry allowed state.
- 2. The energy levels of the interacting HOMO and LUMO must be comparable (within 6ev).
- 3. When the HOMO and LUMO to two molecules overlap, electrons are transferred from the HOMO of one molecule to the LUMO of the other molecule. The direction of the transfer should be in line with the electronegativities and be consistent with the weakening of the original bond.

π MOs of 1,3-Butadiene

Highest energy orbitalBoth antibonding
orbitals are vacant 4π electrons; 2 in
each orbitalLowest energy orbital

• The dimerization of ethylene to give cyclobutane does not occur under conditions of typical Diels-Alder reactions. Why not?

Example E: Octatriene *Photochemical Electrocyclic Reactions*

Sterochemical Rules for the Electrocyclic Reactions

Electron pairs (double bonds) even number odd number **Thermal Reaction**

conrotary

disrotary

Photochemical Reaction

disrotary

conrotary

A

S

S

A

HOMO

Energy correlation diagram

·MO

MO.

