§ 6 The polyatomic molecules (B)

6.1 Electron-deficient multi-center bonds

6.1.1 Boranes and their relatives

i. B_2H_6

B: 3 valence electrons forms 2 B-H bond

three center two electron B - H - B bond : B: sp^{3} hybridization, H : 1s orbital $\psi = C_{a}\psi_{B1} + C_{b}\psi_{H} + C_{a}\psi_{B2}$ its seqular equation is : $\begin{vmatrix} E_{B} - E & \beta & 0 \\ \beta & E_{H} - E & \beta \\ 0 & \beta & E_{B} - E \end{vmatrix} = 0$ $E_{1} = E_{H} + c\beta$ (bonding) $E_{2} = E_{B}$ ($E_{2} > E_{H}$) (anti - bonding) $E_{3} = E_{B} - c'\beta$ (anti - bonding) $\psi_{1} = \frac{1}{2}(\psi_{B1} + \sqrt{2}\psi_{H} + \psi_{B2})$ $\psi_{2} = \frac{1}{\sqrt{2}}(\psi_{B1} - \psi_{B2})$ $\psi_{3} = \frac{1}{2}(\psi_{B1} - \sqrt{2}\psi_{H} + \psi_{B2})$

Three center two electron B-H-B bond:

ii. B₅H₉

Electron-deficient multi-center bonds

$$\begin{vmatrix} E_{B} - E & \beta & \beta \\ \beta & E_{B} - E & \beta \\ \beta & \beta & E_{B} - E \end{vmatrix} = 0$$

solve seqular equation

$$E_{1} = E_{B} + 2\beta$$

$$E_{2} = E_{3} = E_{B} - \beta$$

$$\psi_{1} = \frac{1}{\sqrt{3}}(\psi_{a} + \psi_{b} + \psi_{a})$$

$$B$$

3center-2electron bonds

6.1.3 For Borohydride ions $B_n H_n^{2-3}$ closo structure and carboranes $C_n B_n H_{n+n'+m}$

B_nH_n²⁻(closo)

 $B_4H_4^{2-}$ (tetrahedral) $B_6H_6^{2-}$ (octahedral) $B_8H_8^{2-}$ (dodecahedral) $B_{12}H_{12}^{2-}$ (icosahedral)

Electron-deficient multi-center bonds

"Closo" series -formula B_nH_n²⁻

Total valence electrons (CVE) = 3n (from B) +n (from H) +2 (negative charge) = 4n+2

• Each BH unit uses 2 electrons. Hence skeletal or framework electrons (NFE=4n+2-2n=2n+2)

• There is little tendency to add H+ and form neutral species. The closo species are , in effect, the anions of quite strong acids.

• Structures are those of the appropriate polyhedra with n vertices.

↓ 1,5-C₂B₃H₅

-

 $1,2-C_2B_4H_6$ $1,6-C_2B_4H_6$ $2,4-C_2B_5H_7$

3 isomers of $C_2B_{10}H_{12}$ (with hydrogen omitted)

Electron-deficient multi-center bonds

6.1.4 other deficient electron compounds Boron group B, AI, Ga, In, TI **Gaseity: monomer** 9^{AA}CH3 H₃C CH_3 120° AI 2.14 70° Solid state: polymer CH₃ H₃C Ĥ3 CH3 СНа CH₃ CH CH₂

Coordination compounds

- compounds composed of a metal atom or ion and one or more ligands.
 - Ligands usually donate electrons to the metal
 - Includes organometallic compounds

New theories arose to describe bonding.

-Valence bond, crystal field, and ligand field.

Θ CH₂- $-H_2C$ -CH₂-CH₂ Θ^{-} $-H_2$ CH_{2} 0 \cap ethylenediaminetetraacetate (EDTA⁴⁻) (hexadentate)

6.2.1 Coordination polyhedron

molecualr	C.N.	hybridization type	Symmetry	geometry
$Ag(NH_3)^{2+}$	2	sp		linear
CuCl ₃ -	3	sp ²	D _{3h}	triangular
Ni(CO) ₄	4	sp ³	T _d	tetrahedral
PtCl ₄ ²⁻	4	dsp ²	D _{4h}	square planar
Fe(CO) ₅	5	dsp ³	D _{3h}	Trigonal bipyramidal
	5	d ² sp ²	C_{4v}	^{square} pyramid
FeF ₆ ⁴⁻	6	d ² sp ³	O _h	octahedral
others	8		D _{4h}	tetragonal
	8		D _{4d}	Anti-square pyramid
	10			Bicapped square antiprism
	12		I _h	icosahedral

6.2.2 Crystal Field Model

- focuses on the energies of the *d* orbitals.
- <u>Assumptions</u>
- 1. Ligands are negative point charges.
- 2. Metal-ligand bonding is entirely ionic.
- strong-field (low-spin): large splitting of *d* orbitals
- weak-field (high-spin): small splitting of *d* orbitals

Crystal-Field Theory

A. Crystal field splitting

Crystal-Field Theory

A. Crystal field splitting

1. spectrochemical series

absorbs appears ROYG GB weakest $Ni(H_2O)_{6}^{2+}$ lower higher $Ni(NH_{3})^{2+}$ Ο E E $Ni(en)_3^{2+}$ G strongest Ni(CN)₄²⁻ Y $\Delta E = hv$ ~visible region

II. Crystal-Field Theory B. Magnetic properties

low-spin complex ← found (maximum pairing) experimentally **diamagnetic**

high-spin complex (minimum pairing) paramagnetic

II. Crystal-Field Theory B. Magnetic properties

C

Competition between: crystal field splitting (Δ) electron pairing energy (P)

when $\Delta < P \Rightarrow$ high-spin complex when $\Delta > P \Rightarrow$ low-spin complex

Generally:	d^1 , d^2 , d^3 : always high-spin
d^4, d^6 :	high-spin with ligands \leq H ₂ O
	low-spin with ligands $>$ H ₂ O
d^{5} :	high-spin with all ligands except CN-
$d^{7}-d^{10}$	always low-spin

II. Crystal-Field Theory B. Magnetic properties	
$e.g., [Cr(H_2O)_6]^{3+}$	
<i>e.g.</i> , [Ni(NH ₃) ₆] ²⁺	
<i>e.g.</i> , [Fe(H ₂ O) ₆] ³⁺ vs	$[Fe(CN)_{6}]^{3-}$

6.2.3 σ ligands and σ bond

Categories of central metal valence orbitals:

σ group: s, p_x , p_y , p_z , $d_{x^2-y^2}$, d_{z^2} π group: d_{xy} , d_{xz} , d_{yz}

$$\psi_{5} = \varphi_{3dz^{2}} \pm \frac{1}{2\sqrt{3}} (2\sigma_{3} + 2\sigma_{6} - \sigma_{1} - \sigma_{2} - \sigma_{4} - \sigma_{5})$$

6.2.4 π – Bonding

- A π -donor ligand <u>donates</u> electrons to the metal center in an interaction that involves a filled ligand orbital and an empty metal orbital.
 - Cl-, Br-, and I- donates p electrons to the metal center
- A π -acceptor ligand <u>accepts</u> electrons from the metal center in an interaction that involves a filled metal orbital and an empty ligand orbital.
 - CO, N₂, NO, and alkenes accept electrons into their vacant anti-bonding MO's.
 - \Box π -acceptor ligands can stabilize low oxidation state metal complexes.

6.2.5 18-electron rule

- A low oxidation state organometallic complex contains πacceptor ligands and the metal center tends to acquire 18 electrons in its valence shell.
- Rules:
 - Treat ligands as neutral entities.
 - The number of valence electrons for a zero-valent metal center is equal to the group number.

- Eg: Cr (group 6) in $Cr(CO)_6$, Fe (group 8) in $Fe(CO)_5$, and Ni (group 10) in $Ni(CO)_4$

18-electron rule

• Many ligands donate more than 1 electron.

1-electron donor: H •(in any bonding mode), and terminal Cl•, Br•, I•,R•(e.g. R=alkyl or Ph) or RO•;

2-electron donor: CO, PR₃, P(OR)₃, R₂C=CR₂ (η^2 -alkene), R₂C: (carbene)

3-electron donor: $\eta^3 - C_3 H_5^{\bullet}$ (allyl radical), RC (carbyne), μ - Cl[•], μ - Br[•], μ - l[•], μ - R₂P[•];

4-electron donor: η^4 -diene, η^4 -C₄R₄ (cyclo-butadienes);

5-electron donor: $\eta^5 - C_5 H_5^{\bullet}$, μ_3 - Cl[•], μ_3 - Br[•], μ_3 - I[•], μ_3 - R₂P[•];

6-electron donor: $\eta^6 - C_6 H_6$, $\eta^6 - C_6 H_5 Me$;

1- or 3-electron donor: NO

Example: Ferrocene

6.3 Prediction of structural features of inorganic iono-covalent compounds with tetrahedral anion complexes

Hume-Rothery's 8 - *N* rule (1930/31)

Rule rationalizes observed structural features of (post-transition) main group elements. By forming the correct number of shared bonds with its neighbors each atom succeeds to complete its octet.

The number of bonds of an element is 8 - N where N is its column number in the periodic table (only for $4 \le N \le 8$).

Generalized 8 - N rule

Pearson (1964), Hulliger & Mooser (1965) 8 - VEC_A = AA - CC / (n/m) for C_mA_n

VEC_A: Number of valence electrons par anion VEC_A < 8, AA>0, CC=0 ⇒ Polyanionic val. comp. VEC_A = 8, AA=0, CC=0 ⇒ Normal valence compound VEC_A > 8, AA=0, CC>0 ⇒ Polycationic val. comp.

AA: Average number of A-A bonds per anion CC; Average number of C-C bonds per cations and/or electrons used for inert-electron pairs on cations

Polyanionic valence compound (1)

 $K_6Pd^{2+}Se_{20}$: VEC_A= 128/20, AA=8/5 $K_6Pd[Se_5]_4$

$$AA = 1$$

$$AA = 4/3$$

$$AA = 6/4$$

$$AA = 8/5$$

$N'_{A/M} = 2/(2 - AA)$

N[•]_{A/M} : Average number of atoms in a non-cyclic charged anion molecule

Polyanionic valence compounds (2)

- LaAs₂ : VEC_A= 6.5; AA = 3/2; N_{A/M} = 4
- $La_2^{As_4} LT, La_4^{As_3}^{As_5} HT$
- $CsTe_4$: $VEC_A = 6.25$; AA = 7/4; $N_{A/M} = 8$
- $Cs_2^{Te_8}$
- $\mathbf{Th}_2\mathbf{S}_5$: $\mathbf{VEC}_A = 7.6$; $\mathbf{AA} = 2/5$
- $Th_2^{S_2}[S]_3$
- Sr_5Si_3 : $VEC_A = 7.33$; AA = 2/3
- $Sr_5^{S_2}[S]$

Polycationic valence compounds

- **HgCl** : $VEC_A = 9$; CC = 1
- [Hg-Hg]Cl₂
- CCl_3 : $VEC_A = 8.33$; CC = 1
- [C-C]Cl₆
- **SiAs** : $VEC_A = 9; CC = 1$
- [Si-Si]As₂

6.4 Transition-metal cluster compounds 6.4.1 Metal-metal bond $L_nM-ML_n, L_nM=ML_n, L_nM\equiv ML_n,...$ so called cluster $Re_2Cl_8^{2-}$ Re, d⁵s²

Re-Re 2.24Å (2.76 Å in Re crystal) C1...Cl 3.32 Å Re^{3+} , d⁴, dsp² hybridization(σ bond), remain four d and one p orbital

 $\sigma(d_{z2} - d_{z2})$ $\pi(d_{xz} - d_{xz})$ $\pi(d_{yz} - d_{yz})$ $\delta(d_{xy} - d_{xy})$ Quadruple Bond $\sigma^{2}\pi^{4}\delta^{2}$

Analog: $Mo_2(O_2CR)_4$ and $Cr_2(O_2CR)_4$

6.4 Transition-metal cluster compounds 6.4.1 Metal-metal bond L_nM-ML_n, L_nM=ML_n, L_nM≡ML_n,... so called cluster

 $Ir_4(CO)_{12}$

6.4.2 Cluster geometry

i. Structural polyhedron $\int G^{S}_{3}(CO)_{12} \qquad \qquad \int f_{4}(CO)_{12} \\ \int G^{S}_{1}(CO)_{12} \\ \int G^{S}_{1}(CO)_{$

ii. Electron counting

$$b = \frac{1}{2}(18n - g)$$

b: bond valence (total number of metal-metal bonds)

- n: number of metal atoms
- g: total electrons in valence shell, including all

In the case that main group atoms are included:

$$b = \frac{1}{2}(18n_1 + 8n_2 - g)$$

iii. Bond valence and the cluster geometry

$$b = \frac{1}{2}(18n - g)$$

Tri-nuc	lear	com	pound	S
---------	------	-----	-------	---

Metal cluster compounds	g	b	M-M/pm	Os
Os ₃ (CO) ₉ (μ ₃ -S) ₂	50	2	Os-Os, 281.3	Os Os
Mn ₂ Fe(CO) ₁₄	50	2	Mn-Fe, 281.5	MnFeMn Fe
Fe ₃ (CO) ₁₂	48	3	Fe-Fe, 281.5	Fe — Fe
Os ₃ H ₂ (CO) ₁₀	46	4	20s-0s, 281.5	Os
			Os=Os, 268.0	Os Os
[Mo ₃ (μ ₃ -Ο)(μ ₂ -Ο) ₃ F ₉)] ⁵⁻	42	6	Mo=Mo, 250.2	
$Re_3(\mu_2$ -CI) ₃ (CH2SiMe ₃) ₆	36	9	Re≡Re, 238.7	Re

Multi-nuclear (N>6) compounds

6.5 Carbon clusters and nanotubes

6.6 Hydrogen Bonding

* Hydrogen bonding in DNA