Chapter 7

Introduction to
Crystallography

Diamonds




7.1 periodicity and lattices of crystal
structure

7.1.1 The characteristics of crystal structure

« Solids can be divided into to primary categories,
and

that are built from atoms or
molecules arranged in a periodic manner in space.

posses short range order only.
They are not related through symmetry.

. Fixed bond lengths and angles
: Associated with a lattice point

Crystals:
Crystals are solids that are built from atoms or
molecules arranged in a periodic manner in space.

Crystalline vs. Amorphous of SiO,

Quartz: (Crystalline) Glass: (Amorphous)
Both Short and Long Range Order Short Range Order Only

® Oxygen

o Silicon

.




2. Fundamental characteristics of crystal

*Spontaneous formation of polyhedral shapes

20 faces ana 12 vertices

Octahedron Tetrahedron

Single crystal gold bead with
naturally formed facets
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100 nm

HRTEM images of hollow beads

*Anisotropy

150 g/mm?2

Conductivity

1150 g/mm?

2
570.g/mm Graphite

NaCl




*Definite sharp melting points

A

T

e Symmetry

«X-ray diffraction by crystals

7.1.2 The lattice and unit cell

e Lattice:

» A periodic pattern of points in space, such
that each lattice point has identical
surroundings.

e Can be reproduced by translational
motion along the vector between any two
points.




a. The lattice and its unit in 1D:

T=ma (m=0, £1, £ 2,

unit cell and its choice for one-dimensional lattice

One dimensional lattice




b. Lattice and its unit in 2D:

T:mg+nb (m,nzo,il,iZ,

*Crystal structure = lattice + structural motif
(basis)

Lattice:

A periodic pattern of points in space, such that
each lattice point has identical surroundings.

«Can be reproduced by translational motion
along the vector between any two points.




Primitive Cdll

Unit Cell Choice

» Thereis always more than one possible
choice of unit cell

» By convention the unit cell is chosen so
that it is as small as possible while
reflecting the full symmetry of the lattice

1) The highest symmetry
2) The smallest area (or volume)




Five 2D lattices

Hexagonal

Primitive unit cdll

Five 2D lattices

Parallelogram Rectangle

s
Tt T &b y=90°,
y # 120°

Primitive unit cdll




Five 2D lattices

Centered Rectangle

e Primitive
enter ed

Five 2D lattices

Parallelogram Square Rectangle

a L]
L] L ] b

L ]
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]
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a:b 'Y:90° LR I
azb y=90°

Centered Rectangle
L T Hexagonal

Ll " * 8 a %

a a_, .
\ . a(”?> a=b y=120°

There are literally thousands of crystalline materials,
there are only 5 distinct planar lattices




Crystal structure = lattice + structural motif

c. Lattices and its unit in 3D:

T=ma+nb+pc (mn,p=0,+1,+2, ..)




The Choice of aUnit Cell: Have maximum symmetry
and minimum size
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The Choice of aPrimitive Cell

1) Theaxial system should be right handed

2) The basis vectors should coincide as much as bossi ble
with directions of highest symmetry

3) Should be the smallest volume that satisfies condition 2

4) Of all lattice vectors none is shorter than a
5) Of those not directed along a none is shorter than b
6) Of those not lying in the a, b plane none is shorter than ¢

7) The three angles between the basis vectors a,b,c are either
all acute or obtuse




Atomic Coordinates. Fractional coordinates

Fractional coordinates:

The positions of atoms inside a
unit cell are specified using
fractional coordinates(x,y,z).
These coordinates specify the
position as fractions of the unit

cell edge lengths _
1: (1.0, 0.6, 0.5)

Example:

Cu b | c un |t Cel | Of CS CI : The Crystal h.‘vULLdL_lfU .

a=b=c
a=B=y=90°
Cs:(0,0,0)
Cl: (1/2,1/2,1/2)

Single Crystal: Composed of only one particular type of space |attice.

Polycrystalline matter: Clusters of multiple crystals.




7.1.3 crystal systems and Bravais Lattices

a. crystal systems

Crystal Characteristic | Unit cell | Choice of axis
systems symmetry parameters
elements
Triclinic Nil azb+£c
o#P#y
Monoclinic azb#c b // 2-fold axis
o=y=90°#f3
Orthorhombic azb#C a b, c/l 2-fold
(X:B:’ngoo axes

rotation | Rhombohedr
a

a=b=c
o=B=y<120°
#90°
Hexagonal
a=b=c
o=B=90°
y=120°
Tetragonal | 4-fold  rotation | a=b=c c/l 4-fold axis
axes Q:B:yzgoo
Hexagonal | 6-fold  rotation | a=bx=c c/l 6-fold axis
axes a:B:gOO
y=120°
Cubic Four 3-fold | a=b=c Four 3-fold axes
rotation axes a=B=y=90° | are paralel to
the four body
diagonals of the
cube




b. Bravais Lattice: (14)

Unit Cell: have maximum symmetry and minimum size

* Triclinic

azb=c

o#=P~y

P (Primitive)

* Monoclinic

P (Primitive) C-centered or A-centered

A primitive unit cell contains one lattice point and a C-centered
unit cell contains two lattice points.




* Orthorhombic

P (Primitive) C-centered or A-centered or B-centered

* Orthorhombic

azb=c

CorAorB

| (In-centered) F (Face-centered)




Face-centered cell and its primitive cell

A Face-centered unit cell contains four lattice points.

* Trigonal ---- Rhombohedral




* Tetragonal
a=b=c

* Hexaagonal

a=b=C

o= =90°,
v =120°




b. Bravais Lattice: (14)

Unit Cell: have maximum symmetry and minimum size

Centred Unit cdll:

Crysta
systems

Triclinic

Monoclinic




2
4
=
=

Monoclinic




Monoclinic F=C

a.Primitive rhomohedral- b.primitive hexagonal
r-centered hexagona r-centered rhombohedral




Bravais L attices

Body-centered cubic  Face-centered cubic

A A

Simple cubic

VA

Simple orthorhombic  C-centered orthorhombic Face-centered orthohombic

Body-centered orthohombic

TH I

Simple triclinic Rhombohedral

Died 30 Mar 1863 (born 23
Aug 1811)

French physicist best
remembered for his work
on the lattice theory of , ,
crystals; Bravais lattices / *
are named for him. i

Hexagonal

Simple C-centered Simple Body-centered
monoclinic Monoclinic tetragonal tetragonal

7.1.4 Crystal Planes and Miller Indices
a.Lattice planes

It is possible to describe certain directions and planes
with respect to the crystal lattice using a set of three
integers referred to as Miller Indices. Miller indices
describe the orientation and spacing of a family of
planes.
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b.Miller indices (hkl)

Miller indices are the
reciprocal intercepts of
the plane on the unit cell
axes.

Example: 1/3:1/2:1/1 = 2:3.6
The Miller index is (236)

Examples of Miller indices

origin




hexagonal, four axis (al,a2,a3,c)

(hkil), i=-(h+k)

C. Directionsin lattice




Example: Directions on the (111) plane.

Miller indices (hkl) are used specify the orientation and
spacing of a family of planes.

{hkl} are used to specify all symmetry
equivalent sets of planes

Miller indices [hkl] are used to specify a direction in space
with respect of the unit cell axes.

<hkl|> are used to specify a set of symmetry
equivalent directions.

[uvw] zone axis




d. d-spacing d
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o
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The spacing between adjacent planes in a family is
referred to as a " d-spacing

-Cubic : 1/d? = (h?+k?+[?)/a2
-Tetragonal: 1/d? = (h2+k?)/a2 + |?/c?
-Orthorhombic: 1/d? = h?/a?+k?/b? + 12/c?
-Hexagonal: 1/d? = (4/3)(h2+hk+k?)/a2 + |?/c?

-Monoclinic: 1/d?2=[(h/a)?+ (k/b)2sin?p + (I/c )?-
(2hl/ac)cosB]/sin?p

=Triclinic:




7.1.5 Real crystals and Crystal defects:

Real crystals are only close approximations of space lattices

Edge dislocation

Simplest point
defect is a
vacancy or
vacant lattice site

For most metals:

Caused through
thermal vibration

Screw Dislocation
* Formed by shear stress

» Also linear and along a
dislocation line




7.2 Symmetry In crystal structures.

7.2.1 Symmetry elements and symmetry
operations

Crystallographers make use of all the symmetry in a
crystal to minimize the number of independent
coordinates

Lattice symmetry
Point symmetry

Other translational symmetry elements: screw axes
and glide planes

. Lattice symmetry

Trnp=ma+nb+pc




b. Point symmetry elements compatible with 3D translations

Reflection Mirror Plane m

Rotation operation Rotation axis n, 12 3,4,6

Inversion Center of symmetry 1

Rotatory inversion Inversion axis 3,4,6

» Point symmetry operation does not alter at least one
point that it operates on: rotation axes, mirror planes,
rotation-inversion axes

Rotation axes only!'  Why ??7?

Lattice points A, A,, A;, A, | (m-1)2]< 1

Through n-fold operation Im-1|<2

A,—> B, m= 3,2,1,0,-1
A,— B, cos a=1, 1/2, 0, -1/2, -1

AA, I BB, a = 0°, 60°, 90°, 120°, 180°
B,B, =a +2acosa = ma n=1 6, 4, 3, 2

cos a = (m-1)/2 rotation axes, 1,2,3,4,6 only!!




The symmetry elements of a cube

- Twofold axis

A Threefold axis

Fourfold axis

2 34 6
Rotation axis

BN

twofold axis threefold axis fourfold axis

general equivalent positions:
(X,y,Z); ('Xv Y, _Z)
2 fold axis// b

genera equivalent positions:
(Xy:2), (-Y, Xy, 2) (-xty, -X, 2)
3fold axis// c




general equivalent positions: (X,y,z),
('y1 -X, Z)! ('X,-y,Z), (y,'X,Z)

4 fold axis// ¢

general equivalent positions: (X,y,2), (X-
y’ X, Z)! (_y’ X-y,Z), (-X,-y,Z), (y'X, -X, Z),
(Y, y-x,2)

6 fold axis// c

c.Screw axes and glide planes:

A two-fold screw 2,

translation a2

(x,y,2)—>(X, =Y, -2)
—>(x+1/2,-y, -2)

Helical
structure

The direction of such an axis is usually along a unit cell edge, and the
translation must be a subintegral fraction of the unit translation in that direction.




Higher order screw axes

Ui ® Fodnisdondn

An a glide Other glide operations

translation a2

* a, b, c, nand d glides occur
* a glide has translational
component of 1/2a

* n glide has trandlational

glide plane

component 1/2a+1/b or
1/2b+1/2c or ...
* d glide has translational
component of the type
(xyz)—>(-xy 2) 1/4a+1/4b+1/4c

—>(-x+1/2 y 2) . e glide

VAVAVAVAVAVA

Zig-zag structure




Summary of symmetry elements and symmetry
operations in crystal structure

Rotation operation rotation axis
Reflection operation mirror plane
Inversion operation center of symmetry
Rotation inversion operation inversion axis
Translation operation lattice
Screw operation screw axis
Glide operation glide plane

n=1,2, 34,6

7.2.2 Space group and point group
Space group: 230

Schonflies notation and International notation
D, %-P2,/n2,/m2 /a C,>—P2/c
system directions

Cubic
hexagonal
Tetragonal
Trigonal
Trigonal*
Orthorhombic
monoclinic




C,>—P2,/c
Genera equivalent positions:
4 1 e (1) xy,z; (2) -x, 1/2+y, 1/2-z; (3)x, 1/2-y, 1/2+Z;(4) -X,-Y,-Z
Special equivalent positions
2 d 1lbar /2,0, 1/2; 1/2,12,0
2 ¢ lbar 0,0, /2; 0,120
2 b 1bar 1/2,0,0; 1/2,1/2,1/2
2 a lbar 0,00; 0,1/2,1/2
| nternational tables for crystallography
P2,/c~20%
efficiency packing

Combining symmetry elements

When a crystal possesses more than one of the above
symmetry elements, these macroscopic symmetry
elements must all pass through a common point. There
are 32 possible combinations of the above symmetry
elements that pass through a point and these are the 32
crystallographic point groups.

32 point groups
14 Bravais lattices
7 Crystal systems

but only 230 space groups




7.2.3 The description and application of crystal structure
Example 1. Crystal of iodine
Crystal System orthorhombic

Space group D18, -Cmca

Cell parameters a=713.6 pm b=468.6 pm c=987.4 pm
Number of molecules per unitcell Z=4
Atomic coordinate for | X y z

0.15434 0.11741

Equivaent positions: (0,0,0)+, (1/2, 1/2, 0)+,
XY,Z; -X, =Y, -Z; -X, -y+1/2, z+1/2; X, y+1/2, -z+1/2

(0, .15434, .11741) (1/2, .65434, .11741)
(0, -.15434, -.11741) (1/2, .34566, -.11741)
(0, .34566, .61741) (1/2, .84566, .61741)
(0, .65434, 38259) (1/2, .15434, 38259)

a) Bond Iength (Bond distance)

M= [(Xy-X,)28+(y,-Y,)20?+(2,-2,)°c?] Y2 = 2.715 A
c) Density of crystal

V=axbxc=327x108pm?3

D=8x127.0/(6.02x 1023x 327.0x 102*) gcm3
=5.16 gcm3




7.3 X-ray diffraction of crystals

Concept of diffraction
(from a plane) Cone of diffraction

Crystal

N\

Detector

Plane in crystal )
Reciprocal space)

(real space)

7.3.1 The source and property of X-ray

copper
AY

T T IR
|
[ U T T A
| | |
of 100-0.01A i ——i— B
1-0.01A: hard x-ray | 'l
| —

(|
02 4 (LR} [14.] 1
WAVELENGTH [angstrams}

100~1A: soft x-ray

2.5-0.5A: used in crystal structure
analysis

1-0.05A: used in medical perspective,
detection of materials wound




X-rays produced by electronic transition between
atomic energy levels

High energy
electron beam

As for Cu:

K,,=1.540594A
1.54056A

K ,=1.544422A

lka1 = 2|Ka2

Notice: K, can not be striped by the monochromator.
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SPring-8, at Osaka, Japan. www.spring8.or.jp

ESRF - European Synchrotron Radiation Facility , Polygone
Scientifique Louis Néel - 6, rue Jules Horowitz - 38000 Grenoble
- France, http://www.esrf.fr
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The Advanced Photon Source (APS) at Argonne National
L aboratory, http://www.aps.anl.gov/aps.php

7.3.2 Laue equation and Bragg’s Law

1. Laue equations

Laue first mathematically
described diffraction from
crystals

consider X-rays scattered
from every atom in every
unit cell in the crystal and
how they interfere with each
other

to get a diffraction spot you

must have constructive The Nobel Prize in Physics 1914
interference for his discovery ?f the diffraction of
X-rays by crystals

Max Von Laue




The derivation of the Laue equation

Interference condition:

the difference in path lengths of
adjacent lattice points must be al
multiple integral of the
wavelength.

AD-CB = a-s-a's,=
a-(s-sy) = ha
Or,
a(cosa- cosa,) = hA
Where,
a— lattice parameter
a,—angle which a makes with s,

o— angle which a makes with s

Expanded to 3D lattice
a-(s-sy) = a(cosa-cosay,) = hA
b-(s-s,) = b(cosB-cosf,) = kA

c-(s-sy) = c(cosy-cosy,) = IA

where,

a,b,c—lattice parameter
a,,ByY,—angle which a makes with s,
o,B,y —angle which a makes with s

h,k,| — indices of diffraction, integers




In the diffraction direction, the difference between the
incident and the diffracted beam through any two
lattice points must be an integral number of
wavelengths.

The vector form (000) to (mnp):
Trnp =Ma +nb +pc
The differences in wavelengths:
A=T,n, " (5-Sp)

=(ma + nb +pc) -(s-S()
= ma -(S-Sy)+nb -(s-sy)+pc (S-Sy)
=mhA+ nkA+plA
=(mh+nk+p)A

2. The Bragg’'s Law

Bragg discovered that you could consider the
diffraction to have arisen from reflection from
lattice planes

A=AD+DB = 2d,;,,sin6, . S
Condition for diffraction: INOA

(N7
2d ) SiN6, =nA (n=1,2,3, ... ‘Y‘M Oy
0,: the angle of reflection ‘V

n: the order of the reflection

2'dnhnan'Sinenh,nk,nI:x (d

= d,/N)

nhnknl
Reformulated Laue equations:
hkl — reflection indices




diffraction
crystal planes - —

(100), (200), ...
(100) (200) (300)
Families of planes

Lattice plane
directions-(100) (100)

3. Reciprocal lattice

X

LN |

\

NN N

EHE|
\
\

\
N




4. Ewald sphere

7.3.3. The intensity of diffraction beam

1. The principle of X-ray scattering

For elastic scattering, each electrons scatters the plane wave
causing a spherical wave (exp2mi(k-r)).

The phase differenceis: A=(res-res)/ A
The scattered x-ray: exp2mi[r-(s-S,)/A] or exp2mi[r-g/A]




The contribution of the scattering of all electrons:

jp(r)exp(Zniq 1/ 2)d°r

For the crystal structure :

p(N) =2 Pou (r +R))

A= ijce” (r + R)exp(27q-r/ A)d°r
A= qpce,,(r)exp(Zﬂiq-r//l)d3r)2exp(27ziq- R /A)

= F(q)Yexp(27iq- R,/ A)

F(q) --- structure factor

F(0) = | poa (1) exp(27iq -1/ 2)d’r

Supposed that there are N,, N,, N, periods along a,
b, c, and all the atoms |locate on the position of lattice
points, F(g) can be replace with a constant ‘f'. f is
scattering factor of atoms.

N,—1N,—1N5—1

An — f y y y e27zi/i(n1a+n2b+n3c)-q
np i Ld L

N, =0n,=0n;=0

For the case of 1D and f=1,




Theintensity:

U

-1.0 0.6 -0.2 0.2

In the case of 3-D:

Therefore,
a-g/A=h, b-g/A=k, c-g/A=l (h, k, | should beinteger)

or a-q=hA, b-g=ki, c-g=Ir

L aue conditions.

PR - (ETAE,




2. The intensity of diffraction beam

F(q) = Ipce" (r)exp(27iq-r/A)d°r
Foo = j_[ j (X, Y, 2)e* 942 dxdydz

The directions of the diffraction beams are determined
by the cell parameters

The intensity of the diffraction beams are determined by
the arrangement of atoms in the cell.

3. systematic absence

Calculation for structure factor

Example A, Body center crystal

=3 {expl 2n(hxky;Hz))+ expli 2n((+U2)+k(Y, +1/2)+ (7 +U2)

Y. expli 2n(hx+ky+z)) (1+ exp(in(h+k+I))

i=1

F hki

While h+k+l =2n+1, F,,,=0:

/

systematic absence




Example Il. Unit cell has a 2, screw axis along the c axis at
x=y=0

Equivalent position (x,y,z) and ( -x, -y, z+1/2)

N/2 N/

Foa = 2. fexpl2mi(hx+ky+Hz)]+ 3 fexp2il(h Xrk Y +(z+1/2)]
= j

j=1

N/2
fexp2mi (1z)]+ Zl fexp2mi 1(z+1/2)
=

2 Z fiexp2ni (12)] (I=2n)

j=1

0 (I=2n+1)

systematic absence

systematic absence

Crystal structure which contain centering, glide plane
and screw axis will have systematic absences.

Namely, some reflections will be systematically absent




systematic absence and sysmmetry

Conditions for extinction Cause of extinction Centering and
symmetry
elements

h+k+l=o0dd In-centred (bodycentred)
h+k =odd C-centred

h+l =odd B-centred

k+| =odd A-centred

h,k,I not all even and not all | Face-centred

odd
-h+k+l not multiples of 3 R-centred R(hexagonal)

k =odd Translation in b/2
I =odd (100) c/2
k+| =odd glid (b+c)/2
k+l not multiples of 4 Planes (b+c)/4

| =odd Translation c/2
| not multiples of 3 Along c/3
| not multiples of 4 (oo0l) cl4
| not multiples of 6 Screw axis c/6

O M W N|IQQ S O T

7.2.4 Applications of X-ray diffraction
1. Methods

* Single crystal diffraction

Monochromatic camera method -- Monochromatic X-ray
Rotation, Oscillation, Weissenberg ...
L aue photography --- white X-ray

Diffractometer -- Monochromatic X-ray

Incident beam




* Powder diffraction

Monochromatic X-ray Diffraction L

Incfident beam .A

sample R

Powder Diffractometer

Radiation sources
X-ray tubes Monochromator — e.g.HOPG

Synchrotron radiation Filter —e.g. Ni for CuKa

Detectors
oFilm
- poor sensitivity, high background, low dynamic range
«Scintillation counters
- good sensitivity, low background, high dynamic range
*lmaging plates
- good sensitivity, low background, good dynamic range, very
efficient data collection
*CCDs and Multiwire detectors

- fast readout, good sensitivity, low background, good dynamic range,
very efficient data collection




Automated diffractometer method

2 Theta

2. The applications

a. crystal structure determination

Intensity data
collection

Crystal system

J Indexing

e g 2Nd Céll

Ihkl _ K‘Fhkl ‘2 parametel‘s

Phase problem .
F(hkl) = j j j (X, y, 2)e¥ ™12 dyaydz

p(X,y,2) =V Y D> F(hkl)e?m(rior
h k|




Indexing of the cubic system:

W 2d,4Sin6= 4
sin® @ =(1/2a)°(h* +k* +1?)
Sinf@och?+k?+|?> mmmpRsin®o,:sin“0,:sin*f, :sin’g,;:
Characteristic line sequence in cubic system:
P. (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 222, 300, ....
(he+k2+12) 1,2,3,4,5,6,8,9,10, 11, 12, 13, ...
| (hkl) 100 110, 111, 200, 210, 211, 220, 221, 222, 300, ....

(h2+k2+12) 2,4,6,8,10,12,14,16 ... >(1:2:3:4:5:6: 7: 8....)
F: (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 222, 300, ....
(h2+k2+12) 3,4, 8,11, 12,16, 19, 20 ...

Examplefor theindexing of cubic system and its applications

Sample: NaCl
Condition; Cu Ko, A=1.5418A, R=50mm

(1) Measure sample and relative intensity

(2) Calculate the position of diffraction lines (usually 20)
(3) Calculate 0 in according to the formulae

(4) Calculatesin?0

(5) Calculatesin?d,: sin?0,: sin%0;: sin%0,:...=3:4:8:11:...
(6) Identify Bravaislattice —face cubic

(7) Index and calculate hz+k2+|2




(7) Index and calculate h2+k2+12

=z
o

20 §) Sin%0 h2+k2+|2
27.46 0.05631 3

31.80 0.07508 4

45.60 0.15016 8

54.06 0.20647 11

57.50 0.22524 12

66.44 0.30032 16

73.30 0.35663 19

77.56 0.37540 20

84.30 0.45045 24

Ol [([N|OO|O|BA|W|IN|F
nln(s|lunlnls|lunln|ls

(8) Calculate lattice parameter

Why use high angle
values?

A

L east-square method, plot
method, high angle values, ...

a=5.628 A

(9) p= 2.165g/cm? for NaCl

AP 2.165x (5.628x10°) _

M 23+ 35.5 =4

N, 6.022x10”

One unit cell contains 4 NaCl




Example Index cubic pattern and calculation lattice parameter

Line sinZ0 sinZ0, h2+k2+|2
/sm29

40 26 20 13 O 1184

l

e s Ch
I o R
O O e o R -
S 2 o N -
N I e e A R
O S 0 O O

If A=1.5418 A,

o STk, 1.5418

== xAJ 42 +0%+0? =3.16 I
25|n<9 ~ 2sin76.79

b. Applications of powder diffractions

2 Theta

Peak Positions Peak Intensities Peak Shapes and Widths




b. Applications of powder diffractions

Information contained in a Diffraction Pattern

Peak Positions
Crystal system, cell parameters, qualitative phase identification

Peak Intensities

Unit cell contents, quantitative phase fractions

Peak Shapes and Widths

Crystallite size, Non-uniform microstrain

b. Applications of powder diffractions

Applications
Qualitative Analysis
Quantitative Analysis
L attice Parameter Determination

Crystallite size/ size distribution & Lattice Distortion
Analysis (Non-uniform microstrain)

Crystallinity Analysis

Residue Stress Analysis

Texture analysis

Structure Solution and Refinement

Radical distribution function (for amorphous materials)




7.2.5 Electron Diffraction and Neutron Diffraction

1. Electron Diffraction

h
J 2meV

—

100 kV ---- 0.00370 nm

a)?EM imagé of ihe;ti p_part of one TeOZ_nan—orod.
(b)Enlarged TEM image. (c) The corresponding
2 Neutron Diffraction electron diffraction pattern.

Scatterring of atomic nuclear

7.3 Quasi-crystal, liquid crystal and amorphous

Quasi-crystal
Liquid crystal

Amorphous




Quasi-crystal

Crystal

Thereisno trandation
Symmetry.




