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7.1 periodicity and lattices of crystal   
structure

7.1.1 The characteristics of crystal structure
1. A few definitions:
• Solids can be divided into to primary categories,

crystalline and amorphous.

• Crystalline Solids that are built from atoms or 
molecules arranged in a periodic manner in space.

• Amorphous Solids posses short range order only. 
They are not related through symmetry.

• Short Range Order: Fixed bond lengths and angles
• Long Range Order: Associated with a lattice point

Crystals: Crystals: 
Crystals are solids that are built from atoms or Crystals are solids that are built from atoms or 

molecules arranged in a periodic manner in space.molecules arranged in a periodic manner in space.



2. Fundamental characteristics of crystal

•Spontaneous formation of polyhedral shapes
F+V=E+2

Single crystal gold bead with 
naturally formed facets



HRTEM images of hollow beads

•Anisotropy

NaCl

570 g/mm2

1150 g/mm2

2150 g/mm2

Graphite

Conductivity



• Symmetry  

•Definite sharp melting points

•X-ray diffraction  by crystals

t

T

7.1.2   The lattice and unit cell

• Lattice: 

• A periodic pattern of points in space, such 
that each lattice point has identical 
surroundings.

• Can be reproduced by translational 
motion along the vector between any two 
points.



a. The lattice and its unit in 1D:  

T = ma (m = 0, ±1, ± 2，…)

unit cell and its choice for one-dimensional lattice

One dimensional lattice



b.  Lattice and its unit in 2D:    

T = ma + nb（m, n = 0,±1, ± 2， …)

•Crystal structure = lattice + structural motif  

(basis)

Lattice: 

•A periodic pattern of points in space, such that 
each lattice point has identical surroundings.

•Can be reproduced by translational motion 
along the vector between any two points.



Primitive Cell

Unit Cell Choice

There is always more   than one possible 
choice of unit  cell
By convention the unit cell is chosen so 
that it is as small as possible while 
reflecting the  full symmetry  of the lattice

1) The highest symmetry
2) The smallest area (or volume)



Five 2D lattices

a=b  γ=120°

Primitive unit cell

Five 2D lattices

a=b γ=90°
a≠b   γ=90°

a≠b    γ ≠ 90°, 
γ ≠ 120°

Primitive unit cell



Five 2D lattices

a≠b  γ=90°unit cell
Centered

Primitive

Five 2D lattices

a=b γ=90°
a≠b   γ=90°

a=b  γ=120°a≠b  γ=90°

a≠b    γ ≠ 90°, 
γ ≠ 120°

unit cell
Centered

Primitive

There are literally thousands of crystalline materials, 
there are only 5 distinct planar lattices



Crystal structure = lattice + structural motif

(basis)

c.  Lattices and its unit in 3D:

T = ma + nb + pc (m, n, p = 0, ±1, ± 2, …)



a
b

c

α
β

γ

The Choice of a Unit Cell: Have maximum symmetry 
and minimum size

a b

c

a b

c

1) The axial system should be right handed

2) The basis vectors should coincide as much as possible 
with  directions of highest symmetry

3) Should be the smallest volume that satisfies condition 2

4) Of all lattice vectors none is shorter than a

5) Of those not directed along a none is shorter than b

6) Of those not lying in the a, b plane none is shorter than c

7) The three angles between the basis vectors a,b,c are either  
all acute or obtuse

The Choice of a Primitive Cell



Atomic Coordinates: Fractional coordinates

0.5

0.6

i

i: (1.0, 0.6, 0.5)

Fractional coordinates:

The positions of atoms inside a 
unit cell are specified using 
fractional coordinates(x,y,z). 
These coordinates specify the 
position as fractions of the unit 
cell edge lengths

Example: 

Cubic unit cell of CsCl, 

a=b=c

α=β=γ=90°

Cs:(0,0,0)

Cl: (1/2,1/2,1/2)

Single Crystal: Composed of only one particular type of space lattice.

Polycrystalline matter: Clusters of multiple crystals.



a. crystal systems

Crystal 
systems 

Characteristic 
symmetry 
elements 

Unit cell 
parameters 

Choice of axis Lattic 
Point 
Group 

Triclinic Nil a≠b≠c 
α≠β≠γ 

 Ci 

Monoclinic  a≠b≠c 
α=γ=90°≠β 

b // 2-fold axis C2h 

Orthorhombic  a≠b≠c 
α=β=γ=90° 

a, b, c // 2-fold 
axes 

D2h 

 

7.1.3  crystal systems and Bravais Lattices

Rhombohedr
al 
a=b=c 
α=β=γ<120°
≠90° 

 D3d Trigonal 3-fold rotation 
axes 

Hexagonal 
a=b≠c 
α=β=90° 
γ=120° 

 D6h 

Tetragonal 4-fold rotation 
axes 

a=b≠c 
α=β=γ=90° 

c // 4-fold axis D4h 

Hexagonal 6-fold rotation 
axes 

a=b≠c 
α=β=90° 
γ=120° 

c // 6-fold axis D6h 

Cubic Four 3-fold 
rotation axes 

a=b=c 
α=β=γ=90° 

Four 3-fold axes 
are parallel to 
the four body 
diagonals of the 
cube 

Oh 

 



b. Bravais Lattice: (14)

Unit Cell: have maximum symmetry and minimum size

* Triclinic 

a≠b≠c

α≠β≠γ

P  (Primitive)

b

a

c90°
90°

β

* Monoclinic 

a≠b≠c

α= γ =90º ≠β

P  (Primitive)
b

90°
90°

β

a

c

C-centered or A-centered

A primitive unit cell contains one lattice point and a C-centered 
unit cell contains two lattice points.



* Orthorhombic 

a≠b≠c

α= β =γ =90º

b
90°

90°

90°

a

c

P  (Primitive) C-centered or A-centered or B-centered

* Orthorhombic 

a≠b≠c

α= β =γ =90º

P C or A or B I  (In-centered) F (Face-centered)



A Face-centered unit cell contains four lattice points.

Face-centered cell and its primitive cell

* Trigonal ---- Rhombohedral a=b=c

α= β =γ ≠ 90º



* Tetragonal 

a=b≠c

α= β =γ =90º

b

90°
90°

90°a

c

P I

* Hexaagonal 

a=b≠c

α= β =90º, 
γ =120º

Unit cell

b90° 90°

120°a

c



a=b=c

α= β = γ =90º

* Cubic

90° 90°

120°
a

b

c

P I F

Crystal 
systems 

P C I F 

Triclinic 

 

   

Monoclinic 

  

  

 

b. Bravais Lattice: (14)

Unit Cell: have maximum symmetry and minimum size

Centred Unit cell:



Orthorhombic 

    
Trigonal 

 

   

Tetragonal 

 

 

 

 

Hexagonal 

 

   

Cubic 

 

 

 
 

 

Monoclinic

I  = C

Tetragonal

C = P



Monoclinic  F = C

a.Primitive rhomohedral-
r-centered hexagonal

b.primitive hexagonal

r-centered rhombohedral



Bravais Lattices

Died 30 Mar 1863 (born 23 
Aug 1811) 
French physicist best 
remembered for his work 
on the lattice theory of 
crystals; Bravais lattices 
are named for him.

Simple cubic Face-centered cubic

Simple orthorhombic

Simple 
tetragonal

Hexagonal

Face-centered orthohombicC-centered orthorhombic

Simple 
monoclinic

Body-centered 
tetragonal

C-centered 
Monoclinic

Rhombohedral

Body-centered orthohombic

Body-centered cubic

Simple triclinic

7.1.4 Crystal Planes and Miller Indices
a.Lattice planes

It is possible to describe certain directions and planes 
with respect to the crystal lattice using a set of three 
integers referred to as Miller Indices. Miller indices
describe the orientation and spacing of a family of 
planes.

(110)
(010)

(210)

(  20)1

(  10)2



b.Miller indices (hkl)

lkh
tsr

::
1

:
1

:
1

=

Miller indices are the 
reciprocal intercepts of 
the plane on the unit cell 
axes.

Example: 1/3:1/2:1/1 = 2:3:6

The  Miller index is (236)

a

b

c

(110) )011(

a

b

c

(111)

a

b

c

(100)

(010)

origin

Examples of Miller indices



(0001)

)0121(

)0011(

)1110(

a

b

c

hexagonal, four axis (a1,a2,-(a1+a2),c)

90°90°

120°
120°

a1

a2

c

a3 90°90°

120°
120°

a1

a2

c

a3

(hkil),  i=-(h+k) hexagonal, four axis (a1,a2,a3,c)

C. Directions in lattice

b

c [100]

[001]

a

[122]

[110]

[210]

[100]

]021[

]021[

b

c [100]

[001]

a

[122]

[110]

[210]

[100]

]021[

]021[



a

b

c

(111)

]101[

]211[

]110[

a

b

c

(111)

]101[

]211[

]110[

Example:  Directions on the (111) plane.

Miller indices [hkl] are used to specify a direction in space 
with respect of the unit cell axes.

<hkl> are used to specify a set of symmetry 
equivalent directions.

[uvw]  zone axis

Miller indices (hkl) are used specify the orientation and 
spacing of a family of planes.

{hkl} are used to specify all symmetry 
equivalent sets of planes



d. d-spacing   dhkl

(110) (010)

(210)
(  20)1

(  10)2

d110

d010

Cubic :              1/d2 = (h2+k2+l2)/a2

Tetragonal:       1/d2 = (h2+k2)/a2 + l2/c2

Orthorhombic: 1/d2 = h2/a2+k2/b2 + l2/c2

Hexagonal:       1/d2 = (4/3)(h2+hk+k2)/a2 + l2/c2

Monoclinic:        1/d2 = [(h/a )2 + (k/b )2sin2β + (l/c )2-
(2hl/ac)cosβ]/sin2β

Triclinic:

The spacing between adjacent planes in a family is 
referred to as a “d-spacing”



7.1.5 Real crystals and  Crystal defects：

Real crystals are only close approximations of space lattices

Edge dislocation

Screw Dislocation

• Formed by shear stress

• Also linear and along a 
dislocation line



7.2 Symmetry in crystal structures.

7.2.1 Symmetry elements and symmetry 
operations

Crystallographers make use of all the symmetry in a 
crystal to minimize the number of independent 
coordinates

a.    Lattice symmetry

b.    Point symmetry

c.   Other translational symmetry elements: screw axes 
and  glide planes

a. Lattice symmetry --- translation operation

Tmnp=ma+nb+pc

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

p
n
m

Tmnp=



• Point symmetry operation does not alter at least one 
point   that it operates on: rotation axes, mirror planes, 
rotation-inversion axes

b.  Point symmetry elements compatible with 3D translations

Reflection                Mirror Plane                     m

Rotation operation   Rotation axis              n,  1, 2, 3, 4, 6

Inversion Center of symmetry     1    

Rotatory inversion   Inversion axis               3, 4, 6

Lattice points A1, A2, A3, A4

Through n-fold operation 

A1 ⎯→ B1

A4 ⎯→ B2

A1A4 // B1B2

B1B2 ＝a +2acosα = ma

cos α = (m-1)/2

A1 A2 A3 A4

B1 B2

a a a

ma

α

αα

α

A1 A2 A3 A4

B1 B2

a a a

ma

α

αα

α

A1 A2 A3 A4

B1 B2

A1 A2 A3 A4

B1 B2

a a a

ma

α

αα

α

Rotation axes, 1,2,3,4,6 only!!      Why ???

⏐(m-1)/2⏐≤ 1

⏐m-1⏐≤ 2

m =     3, 2, 1, 0, -1

cos α=1, 1/2, 0, -1/2, -1

α = 0º, 60º, 90º, 120º, 180º

n=  1,   6,    4,    3,      2

rotation axes, 1,2,3,4,6 only!!



The symmetry elements of a cube

Twofold axis

Threefold axis

Fourfold axis

2     3   4    6
Rotation axis

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
100

010

001

)2(R

general equivalent positions: 
(x,y,z); (-x, y, -z) 

2 fold axis // b 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
100

011

010

)3(R

general equivalent positions: 
(x,y,z), (-y, x-y, z) (-x+y, -x, z)

3 fold axis // c 



⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
100

001

010

)4(R
general equivalent positions: (x,y,z), 

(-y, -x, z), (-x,-y,z), (y,-x,z) 

4 fold axis // c 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
100

011

011

)6(R

general equivalent positions: (x,y,z), (x-
y, x, z), (-y, x-y,z), (-x,-y,z), (y-x, -x, z), 
(y, y-x,z) 

6 fold axis // c 

c.Screw axes and glide planes:

A two-fold screw  21

Helical 
structure

The direction of such an axis is usually along a unit cell edge, and the 
translation must be a subintegral fraction of the unit translation in that direction.

(x,y,z)→(x, –y, -z) 

→(x+1/2,-y, -z)



Higher order screw axes

Screw 31 Screw 32

An a glide Other glide operations

• a,  b, c, n and d glides occur

• a glide has translational   

component of 1/2a

• n glide has trandlational 

component 1/2a+1/b or 

1/2b+1/2c or …

• d glide has translational 

component of the type   

1/4a+1/4b+1/4c

• e glide

Zig-zag structure

(xyz)→(-x y z) 

→(-x+1/2  y  z)



Summary of symmetry elements and symmetry 
operations in crystal structure

• Rotation operation                            rotation axis
• Reflection operation                         mirror plane
• Inversion operation                          center of symmetry
• Rotation inversion operation          inversion axis
• Translation operation                       lattice
• Screw operation                               screw axis
• Glide operation                                glide plane

n=1, 2, 3, 4, 6

7.2.2  Space group and point group

Space group:  230

Schonflies notation  and  International notation

D2h
16 - P21/n 21/m 21/a               C2h

5 – P21/c

--bmonoclinic

cbaOrthorhombic

acTrigonal*

-a-ba+b+cTrigonal

a+bacTetragonal

2a+bachexagonal

a+ba+b+caCubic

321

directionssystem



C2h
5 – P21/c

General equivalent positions: 

4 1  e  (1) x,y,z; (2) -x, 1/2+y, 1/2-z; (3)x, 1/2-y, 1/2+z;(4) -x,-y,-z

Special equivalent positions

2  d  1bar  1/2,0, 1/2;   1/2, 1/2, 0

2  c  1bar  0,0, 1/2;     0, 1/2, 0

2  b  1bar  1/2,0,0;     1/2, 1/2, 1/2

2  a  1bar  0,0,0;       0, 1/2, 1/2

International tables for crystallography

P21/c~20%

efficiency packing

Combining symmetry elements

When a crystal possesses  more than one of the above 
symmetry elements, these macroscopic symmetry 
elements must all pass through a common point. There 
are 32 possible combinations of the above symmetry 
elements that pass through a point and these are the 32 
crystallographic point groups.

32 point groups

14 Bravais lattices

7 Crystal systems

but only 230 space groups



7.2.3 The description and application of crystal structure

Example 1. Crystal of iodine

Crystal System                orthorhombic

Space group                  D18
2h-Cmca 

Cell parameters a=713.6 pm  b= 468.6 pm   c = 987.4 pm

Number of molecules per unit cell  Z = 4

Atomic coordinate for I            x       y   z

0 0.15434       0.11741

Equivalent positions: (0,0,0)+, (1/2, 1/2, 0)+,

x,y,z; -x, -y, -z; -x, -y+1/2, z+1/2; x, y+1/2, -z+1/2

(0, .15434, .11741)       (1/2, .65434, .11741)

(0, -.15434, -.11741)           (1/2, .34566, -.11741)

(0, .34566, .61741)              (1/2, .84566, .61741)

(0, .65434, 38259)               (1/2, .15434, 38259)

a) Bond length  (Bond distance)

r1-2= [(x1-x2)
2a2+(y1-y2)

2b2+(z1-z2)
2c2]1/2 = 2.715 A

c) Density of crystal

V = a x b x c = 3.27 x 10 8 pm 3

D = 8 x 127.0 /( 6.02 x 10 23 x 327.0 x 10 –24 ) g cm-3

=5.16 g cm-3



7.3 X-ray diffraction of crystals

7.3.1 The source and property of X-ray

X-ray tube
the wavelengths of X-ray are in the range

of 100-0.01Å

• 1-0.01Å:    hard x-ray

• 100～1Å：soft x-ray

• 2.5-0.5Å:   used in crystal structure 
analysis

• 1-0.05Å: used in medical perspective, 
detection of  materials wound



X-rays produced by electronic transition between 
atomic energy levels

K

e

e

High energy 
electron beam

M
LL 

radiation

As for Cu:

Kα1=1.540594Å

Kα2=1.544422Å

IKα1 ≈ 2IKα2

1.54056Å

Notice:  Kα2 can not be striped by the monochromator.

Kα2

Kα1



Synchrotron Radiation X ray Source





SPring-8,  at Osaka, Japan. www.spring8.or.jp

ESRF - European Synchrotron Radiation Facility , Polygone 
Scientifique Louis Néel - 6, rue Jules Horowitz - 38000 Grenoble
- France , http://www.esrf.fr



The Advanced Photon Source (APS) at Argonne National 
Laboratory, http://www.aps.anl.gov/aps.php 

7.3.2 Laue equation and Bragg’s Law

1. Laue equations

Laue first mathematically 
described diffraction from 
crystals

• consider X-rays scattered 
from every atom in every 
unit cell in the crystal and 
how they interfere with each 
other

• to get a diffraction spot you 
must have constructive 
interference

Max Von Laue



Interference condition:

the difference in path lengths of 
adjacent lattice points must be a 
multiple integral of the 
wavelength.

AD-CB = a·s-a·s0 = 

a·(s-s0) = hλ

Or, 

a(cosα- cosα0) = hλ

Where, 

a— lattice parameter

α0—angle which a makes with s0

α— angle which a makes with s

The derivation of the Laue equation

α

α0

Expanded to 3D lattice

a·(s-s0) = a(cosα-cosα0) = hλ

b·(s-s0) = b(cosβ-cosβ0) = kλ

c·(s-s0) = c(cosγ-cosγ0) = lλ

where,

a,b,c—lattice parameter

α0,β0,γ0—angle which a makes with s0

α,β,γ —angle which a makes with s

h,k,l — indices of diffraction, integers



In the diffraction direction, the difference between the 
incident and the diffracted beam through any two 
lattice points must be an integral number of 
wavelengths.

The vector form (000) to (mnp):

Tmnp = ma + nb +pc

The differences in wavelengths:

Δ =Tmnp · (s-s0)

=(ma + nb +pc) ·(s-s0)

= ma ·(s-s0)+nb ·(s-s0)+pc ·(s-s0)

=mhλ+ nkλ+plλ

=(mh+nk+pl)λ

Δ=AD+DB = 2d(hkl)sinθn

Condition for diffraction:

2d(hkl) sinθn = nλ (n=1, 2, 3, … )

θn:    the angle of reflection

n:    the order of the reflection

2⋅dnhnknl⋅sinθnh,nk,nl=λ

Reformulated Laue equations:

2dhkl ⋅sinθ = λ

hkl — reflection indices

2. The Bragg’s Law

Bragg discovered that you could consider the 
diffraction to have arisen from reflection from 
lattice planes s0 s

O

A
dhkl

θθ

D
B

(dnhnknl = dhkl/n)



Families of planes
(100)      (200)      (300)

diffraction 
crystal planes  -

(100), (200), …

(100)

(200)

Lattice plane 
directions-(100)

a*

b*c*
000

100

101

001

010

110
111

102 112

001

011
101

111

r*

221

a*

b*c*
000

100

101

001

010

110
111

102 112

001

011
101

111

r*

221

V
cba
vv

v ×
=*

V
acb
vvv ×

=*

V
bac
vv

v ×
=*

**** clbkahr vvvv ++= hkldr /1* =v

3. Reciprocal lattice 



4. Ewald sphere 

O1
OA

G

1/λ

1/dhkl
2θ

S

S0

r*

θ

7.3.3. The intensity of diffraction beam

1. The principle of X-ray scattering

For elastic scattering, each electrons scatters the plane wave 
causing a spherical wave (exp2πi(k⋅r)).

The phase difference is:  Δ=(r•s - r•so)/λ

The scattered x-ray: exp2πi[r⋅(s-s0)/λ] or exp2πi[r⋅q/λ] 

O

s

s0

rs-s0 P

Q R



The contribution of the scattering of all electrons: 

rdriqr∫ ⋅ 3)/2exp()( λπρ

For the crystal structure ：

a

b
c

Rn

∑ +=
n

ncell Rrr )()( ρρ

∑∫ ⋅+=
n

ncell rdriqRrA 3)/2exp()( λπρ

( )
∑

∑∫
⋅=

⋅⋅=

n
n

n
ncell

RiqqF

RiqrdriqrA

)/2exp()(

)/2exp()/2exp()( 3

λπ

λπλπρ

rdriqrqF cell
3)/2exp()()( λπρ ⋅= ∫

F(q) --- structure factor 

Supposed that there are N1，N2，N3 periods along a，
b，c, and all the atoms locate on the position of lattice 
points, F(q) can be replace with a constant ‘f’. f is 
scattering factor of atoms.

For the case of 1D and f=1, 

λπ

λπ
λπ

/qa2

/qa21

0

/qa2

1

1
⋅

⋅−

=

⋅

−
−

==∑ i

iNN
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eeA
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2
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N

n

N

n

N

n

nnni
mnp efA qcbaλπ



( )
( )h
Nh

N

AAAI NNN π
π

λ
π
λ
π

2

2

2

2

*2

sin

sin

qasin

qasin
=

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

==∝

The intensity: 

0

10

20

30

-1.0 -0.6 -0.2 0.2 0.6 1.0

|A|2(N=5)

h 0

50

100

150

200

250

-1.0 -0.6 -0.2 0.2 0.6 1.0

|A|2(N=15)

h

In the case of 3-D:
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π
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π
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π
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2
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2
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sin

sin

sin

sin

sin

sin
NNN

fAI mnp

Therefore,

a⋅q/λ=h，b⋅q/λ=k，c⋅q/λ=l   (h，k，l should be integer)

or a⋅q=hλ，b⋅q=kλ，c⋅q=lλ

----- Laue conditions。

2
3

2
2

2
1

2 NNNfI ∝ 2
3

2
2

2
1

2 NNNFI hkl∝



dxdydzezyxF lzkyhxi
hkl ∫ ∫ ∫ ++= )(2),,( πρ

∑
=

++=
n

j

lzkyhxi
jhkl

jjjefF
1

)(2π

The directions of the diffraction beams are determined 
by the cell parameters

The intensity of the diffraction beams are determined by 
the arrangement of atoms in the cell.

rdriqrqF cell
3)/2exp()()( λπρ ⋅= ∫

2
3

2
2

2
1

2 NNNFI hkl∝
2

hklhkl FKI =

2. The intensity of diffraction beam

Calculation for structure factor

Example A,   Body center crystal

systematic absence

3. systematic absence

Fhkl=  fj {exp(i 2π(hxj+kyj+lzj))+ exp(i 2π(h(xj+1/2)+k(yj+1/2)+l(zj+1/2)))}

=  fj exp(i 2π(hxj+kyj+lzj)) (1+ exp(iπ(h+k+l))

∑
=

2/

1

N

j

∑
=

2/

1

N

j

While h+k+l =2n+1, Fhkl=0；



Equivalent position (x,y,z) and (  -x ,  -y , z+1/2)

Fhkl =  fjexp[2πi(hxj+kyj+lzj)]+        fjexp2πi[(h  +k +l(zj+1/2)]

F00l= fjexp2πi (lzj)]+        fjexp2πi l(zj+1/2)

=          fjexp2πI (lzj)](1+ exp2πi ·l/2)

=

x y∑
=

2/

1

N

j
∑
=

2/

1

N

j

∑
=

2/

1

N

j

∑
=

2/

1

N

j

∑
=

2/

1

N

j

2        fjexp2πi (lzj)]            (l=2n)

0                                         (l=2n+1)

∑
=

2/

1

N

j

Example II. Unit cell has a 21 screw axis along the c axis at 
x=y=0

(x,y,z)

yx(   ,    , z+1/2)systematic absence

systematic absence

Crystal structure which contain centering, glide plane 
and screw axis will have systematic absences.

Namely, some reflections will be systematically absent



21, 42, 63

31, 32, 62, 64

41, 43

61, 65

Translation           c/2

Along                   c/3

(oo1)                    c/4

Screw axis            c/6

l =odd

l not multiples of 3

l not multiples of 4

l not multiples of 6

00l

b

c

n

d

Translation in            b/2

(100)                            c/2

glid                      (b+c)/2

Planes                  (b+c)/4

k =odd

l =odd

k+l =odd

k+l not multiples of 4

okl

I

C

B

A

F

R(hexagonal)

In-centred (bodycentred)

C-centred

B-centred

A-centred

Face-centred

R-centred

h+k+l=odd

h+k =odd

h+l =odd

k+l =odd

h,k,l not all even and not all 
odd

-h+k+l not multiples of 3

hkl

Centering and 
symmetry 
elements

Cause of extinctionConditions for extinctionTypes 
of 
reflecti
on

systematic absence and sysmmetry

7.2.4 Applications of X-ray diffraction

1. Methods

* Single crystal diffraction 

Monochromatic camera method -- Monochromatic X-ray

Rotation, Oscillation, Weissenberg …

Laue photography  --- white X-ray

Diffractometer -- Monochromatic X-ray

Incident beam

2θ
Diffraction beamCrystal



* Powder diffraction

2θ
poder

2θ

Diffraction beam

Incident beam

2θ

sample
θ

O

R

P

Incident beam

Diffraction beam

Powder Diffractometer

Monochromatic X-ray

Radiation sources
X-ray tubes

Synchrotron radiation

Detectors
•Film

- poor sensitivity, high background, low dynamic range

•Scintillation counters
- good sensitivity, low background, high dynamic range

•Imaging plates
- good sensitivity, low background, good dynamic range, very 
efficient data collection
•CCDs and Multiwire detectors
- fast readout, good sensitivity, low background, good dynamic range, 
very efficient data collection

Monochromator – e.g.HOPG

Filter – e.g. Ni for CuKα



Automated diffractometer method

2.  The applications

2

hklhkl FKI =

dxdydzezyxhklF lzkyhxi∫ ∫ ∫ ++= )(2),,()( πρ

∑∑∑ ++−−=
h k l

lzkyhxiehklFVzyx )(21 )(),,( πρ

a. crystal structure determination

Phase problem

Indexing

Intensity data 
collection

Crystal system 
and Cell 
parameters



Indexing of the cubic system:

2222

22222

222

0

sin

)()2/(sin

lkh
lkha

lkh
adhkl

++∝

++=
++

=

θ

λθ

Characteristic line sequence in cubic system:

P:   (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 222, 300, ….

（h2＋k2＋l2 )    1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, …

I:   (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 222, 300, ….

（h2＋k2＋l2 )    2, 4, 6, 8, 10, 12, 14, 16 … (1: 2: 3: 4: 5: 6: 7: 8:…)

F:   (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 222, 300, ….

（h2＋k2＋l2 )     3, 4,  8, 11, 12, 16, 19, 20 …

:sin:sin:sin:sin 41
2

31
2

2
2

1
2 θθθθ

2dhklsinθ= λ

Example for the indexing of cubic system and its applications

Sample: NaCl

Condition: Cu Kα, λ=1.5418Å, R=50mm

(1) Measure sample and relative intensity

(2) Calculate the position of diffraction lines (usually 2θ) 

(3) Calculate θ in according to the formulae

(4) Calculate sin2θ

(5) Calculate sin2θ1: sin2θ2 : sin2θ3 : sin2θ4 :…=3:4:8:11:…

(6) Identify Bravais lattice →face cubic                                           

(7) Index and calculate h2+k2+l2



244220.4504542.1584.30S9

204200.3754038.7877.56S8

193310.3566336.6573.30W7

164000.3003233.2266.44S6

122220.2252428.7557.50S5

113110.2064727.0354.06W4

82200.1501622.8045.60S3

42000.0750815.9031.80S2

31110.0563113.7327.46W1

h2+k2+l2hklsin2θθ2 θINo.

(7) Index and calculate h2+k2+l2

(8) Calculate lattice parameter 

)(
4

5418.1
sin 222

2

2
2 lkh

a
++×=θ

a=5.628 Å

(9) ρ= 2.165g/cm3 for NaCl

4

10022.6
5.3523

)10628.5(165.2

23

8

0

=

×
+

××
==

−

N
M
Vn ρ

One unit cell contains 4 NaCl

Least-square method, plot 
method, high angle values,…

θ90°0°

Why use high angle 
values?



4001680.947076.79153.588

3211470.829065.58131.167

2221260.710957.46114.926

3101050.592350.32100.645

220840.474043.5187.024

211630.355536.6073.203

200420.237029.1328.262

110210.118420.1340.261

hklh2+k2+l2sin2θi
/sin2θ1

sin2θθ2θLine

Example. Index cubic pattern and calculation lattice parameter

If λ=1.5418 Å,

16.3004
79.76sin2

5418.1

sin2
222222 =++×=++⋅= lkha

θ
λ

Å

b. Applications of powder diffractions

Peak Positions Peak Intensities Peak Shapes and Widths



Information contained in a Diffraction Pattern

Peak Positions

Crystal system, cell parameters, qualitative phase identification

Peak Intensities

Unit cell contents, quantitative phase fractions

Peak Shapes and Widths

Crystallite size, Non-uniform microstrain

b. Applications of powder diffractions

b. Applications of powder diffractions

Applications

Qualitative Analysis

Quantitative Analysis

Lattice Parameter Determination

Crystallite size / size distribution & Lattice Distortion 
Analysis (Non-uniform microstrain)

Crystallinity Analysis

Residue Stress Analysis

Texture analysis 

Structure Solution and Refinement

Radical distribution function (for amorphous materials)



7.2.5 Electron Diffraction and Neutron Diffraction

1. Electron Diffraction

100 kV  ---- 0.00370 nm

2meV

hλ＝

2. Neutron Diffraction

----- Scatterring of atomic nuclear

a) TEM image of the tip part of one TeO2 nanorod. 
(b)Enlarged TEM image. (c) The corresponding 
electron diffraction pattern.

7.3 Quasi-crystal, liquid crystal and amorphous

Quasi-crystal

Liquid crystal 

Amorphous



Quasi-crystal
Crystal

There is no translation 
symmetry. 


