

Introduction to Crystallography

Diamonds

7.1 **periodicity and lattices of crystal structure**

- 7.1.1 The characteristics of crystal structure **1. A few definitions:**
- **Solids can be divided into to primary categories, crystalline and amorphous.**
- **Crystalline Solids that are built from atoms or molecules arranged in a periodic manner in space.**
- **Amorphous Solids posses short range order only. They are not related through symmetry.**
- **Short Range Order: Fixed bond lengths and angles**
- **Long Range Order: Associated with a lattice point**

2. Fundamental characteristics of crystal

•Spontaneous formation of polyhedral shapes $F+V=E+2$

Single crystal gold bead with naturally formed facets

HRTEM images of hollow beads

7.1.2 The lattice and unit cell

- Lattice:
- A periodic pattern of points in space, such that each lattice point has identical surroundings.
- Can be reproduced by translational motion along the vector between any two points.

Lattice:

•A periodic pattern of points in space, such that each lattice point has identical surroundings. •Can be reproduced by translational motion along the vector between any two points.

Unit Cell Choice

- ¾ **There is always more than one possible choice of unit cell**
- ¾ **By convention the unit cell is chosen so that it is as small as possible while reflecting the full symmetry of the lattice**

1) The highest symmetry 2) The smallest area (or volume)

Five 2D lattices

There are literally thousands of crystalline materials, there are only 5 distinct planar lattices

The Choice of a Unit Cell: Have maximum symmetry and minimum size

The Choice of a Primitive Cell

- 1) The axial system should be right handed
- 2) The basis vectors should coincide as much as possible with directions of highest symmetry
- 3) Should be the smallest volume that satisfies condition 2
- 4) Of all lattice vectors none is shorter than a
- 5) Of those not directed along a none is shorter than b
- 6) Of those not lying in the a, b plane none is shorter than c
- 7) The three angles between the basis vectors a,b,c are either all acute or obtuse

Atomic Coordinates: Fractional coordinates

Fractional coordinates:

The positions of atoms inside a unit cell are specified using fractional coordinates(x,y,z). These coordinates specify the position as fractions of the unit cell edge lengths

i: (1.0, 0.6, 0.5)

Example: Cubic unit cell of CsCl, a=b=c α**=**β**=**γ**=90**°

Cs:(0,0,0) Cl: (1/2,1/2,1/2)

Single Crystal: Composed of only one particular type of space lattice. Polycrystalline matter: Clusters of multiple crystals.

7.1.3 crystal systems and Bravais Lattices

a. crystal systems

b. Bravais Lattice: (14)

Unit Cell: have maximum symmetry and minimum size

*** Orthorhombic**

a≠b≠c $\alpha = \beta = \gamma = 90^{\circ}$

b. Bravais Lattice: (14)

Unit Cell: have maximum symmetry and minimum size

Centred Unit cell:

Monoclinic

Tetragonal

a.Primitive rhomohedralr-centered hexagonal

b.primitive hexagonal r-centered rhombohedral

Bravais Lattices

Died 30 Mar 1863 (born 23 Aug 1811) French physicist best remembered for his work on the lattice theory of crystals; Bravais lattices are named for him.

7.1.4 Crystal Planes and Miller Indices

a.Lattice planes

It is possible to describe certain directions and planes with respect to the crystal lattice using a set of three integers referred to as Miller Indices. Miller indices describe the orientation and spacing of a family of planes.

C. Directions in lattice

Example: Directions on the (111) plane.

Miller indices (hkl) are used specify the orientation and spacing of a family of planes.

> **{hkl} are used to specify all symmetry equivalent sets of planes**

Miller indices [hkl] are used to specify a direction in space with respect of the unit cell axes.

> **<hkl> are used to specify a set of symmetry equivalent directions.**

[uvw] zone axis

d. d-spacing dhkl

The spacing between adjacent planes in a family is referred to as a "d-spacing"

7.1.5 Real crystals and Crystal defects:

Real crystals are only close approximations of space lattices

Edge dislocation

- **Simplest point** defect is a vacancy or vacant lattice site
- For most metals:
- Caused through thermal vibration

Screw Dislocation

- Formed by shear stress
- Also linear and along a dislocation line

7.2 Symmetry in crystal structures.

7.2.1 Symmetry elements and symmetry operations

- ¾ **Crystallographers make use of all the symmetry in a crystal to minimize the number of independent coordinates**
- **a. Lattice symmetry**
- **b. Point symmetry**
- **c. Other translational symmetry elements: screw axes and glide planes**
- **a. Lattice symmetry --- translation operation**

T_{mnp}=ma+nb+pc

$$
\mathbf{T}_{\text{mnp}} = \begin{bmatrix} m \\ n \\ p \end{bmatrix}
$$

b. Point symmetry elements compatible with 3D translations

• Point symmetry operation does not alter at least one point that it operates on: rotation axes, mirror planes, rotation-inversion axes

$$
R(2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

general equivalent positions: $(x,y,z);$ $(-x, y, -z)$ 2 fold axis // b

general equivalent positions: (x,y,z) , $(-y, x-y, z)$ $(-x+y, -x, z)$ 3 fold axis // c

$$
R(4) = \begin{bmatrix} 0 & 1 & 0 \\ \overline{1} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

general equivalent positions: (x,y,z), $(-y, -x, z), (-x, -y, z), (y, -x, z)$ 4 fold axis // c

general equivalent positions: (x,y,z), (xy, x, z), (-y, x-y,z), (-x,-y,z), (y-x, -x, z), (y, y-x,z) 6 fold axis // c

c.Screw axes and glide planes:

A two-fold screw $2₁$

The direction of such an axis is usually along a unit cell edge, and the translation must be a subintegral fraction of the unit translation in that direction.

Higher order screw axes

- a, b, c, n and d glides occur
- a glide has translational component of 1/2a
- n glide has trandlational component 1/2a+1/b or 1/2b+1/2c or …
- d glide has translational component of the type 1/4a+1/4b+1/4c
- e glide

Zig-zag structure

Summary of symmetry elements and symmetry operations in crystal structure

- Rotation operation **rotation** rotation axis
- Reflection operation mirror plane
-
- Rotation inversion operation inversion axis
- Translation operation lattice
- Screw operation screw axis
- Glide operation glide plane

n=1, 2, 3, 4, 6

• Inversion operation center of symmetry

7.2.2 Space group and point group

Space group: 230

Schonflies notation and International notation

 $C_{2h}^5 - P2_1/c$

General equivalent positions:

4 1 e (1) x,y,z; (2) -x,
$$
1/2+y
$$
, $1/2-z$; (3)x, $1/2-y$, $1/2+z$; (4) -x,-y,-z

Special equivalent positions

2 d 1bar 1/2,0, 1/2; 1/2, 1/2, 0

- 2 c 1bar 0,0, 1/2; 0, 1/2, 0
- 2 b 1bar 1/2,0,0; 1/2, 1/2, 1/2
- 2 a 1bar $0,0,0;$ 0, $1/2, 1/2$

International tables for crystallography

 $P2_1/c \sim 20\%$

efficiency packing

Combining symmetry elements

When a crystal possesses more than one of the above symmetry elements, these macroscopic symmetry elements must all pass through a common point. There are 32 possible combinations of the above symmetry elements that pass through a point and these are the 32 crystallographic point groups.

32 point groups 14 Bravais lattices 7 Crystal systems but only 230 space groups

Equivalent positions: (0,0,0)+, (1/2, 1/2, 0)+,

x,y,z; -x, -y, -z; -x, -y+1/2, z+1/2; x, y+1/2, -z+1/2

 $(0, .15434, .11741)$ $(1/2, .65434, .11741)$

- $(0, -15434, -11741)$ $(1/2, .34566, -11741)$
- $(0, .34566, .61741)$ $(1/2, .84566, .61741)$
- (0, .65434, 38259) (1/2, .15434, 38259)
- a) Bond length (Bond distance)

$$
\mathbf{r}_{1\text{-}2} = \left[(\mathbf{x}_1 - \mathbf{x}_2)^2 \mathbf{a}^2 + (\mathbf{y}_1 - \mathbf{y}_2)^2 \mathbf{b}^2 + (\mathbf{z}_1 - \mathbf{z}_2)^2 \mathbf{c}^2 \right]^{1/2} = 2.715 \text{ A}
$$

c) Density of crystal

 $V = a x b x c = 3.27 x 10⁸ pm³$

 $D = 8 \times 127.0$ /(6.02 x 10²³ x 327.0 x 10⁻²⁴) g cm⁻³

 $=5.16$ g cm⁻³

7.3.1 The source and property of X-ray

 $\frac{1}{0.71}$

• **1-0.05Å: used in medical perspective, detection of materials wound**

analysis

Notice: $K_{\alpha 2}$ can not be striped by the monochromator.

SPring-8, at Osaka, Japan. www.spring8.or.jp

ESRF - European Synchrotron Radiation Facility , Polygone Scientifique Louis Néel - 6, rue Jules Horowitz - 38000 Grenoble - France , http://www.esrf.fr

The Advanced Photon Source (APS) at Argonne National Laboratory, http://www.aps.anl.gov/aps.php

7.3.2 Laue equation and Bragg's Law

1. Laue equations

Laue first mathematically described diffraction from crystals

- **consider X-rays scattered from every atom in every unit cell in the crystal and how they interfere with each other**
- **to get a diffraction spot you must have constructive interference**

The Nobel Prize in Physics 1914 "for his discovery of the diffraction of X-rays by crystals"

The derivation of the Laue equation

Interference condition:

the difference in path lengths of adjacent lattice points must be a multiple integral of the wavelength.

 $AD-CB = a \cdot s \cdot a \cdot s_0 =$

$$
a\cdot (s\text{-}s_o) = h\lambda
$$

Or,

a(cosα- cosα₀) = hλ

Where,

a— lattice parameter

α**0—angle which** *a* **makes with** *s0*

α**— angle which** *a* **makes with** *s*

Expanded to 3D lattice $a($ s-s_ρ $)$ = a(cosα-cosα_ρ $)$ = hλ $\mathbf{b} \cdot (\mathbf{s} - \mathbf{s}_0) = \mathbf{b}(\mathbf{cos} \beta - \mathbf{cos} \beta_0) = \mathbf{k} \lambda$ *c·(s-s0)* **= c(cos**γ**-cos**γ**0) = l**λ

where,

a,b,c—**lattice parameter** α_0 , β₀, γ₀—angle which *a* makes with s_0 α**,**β**,**γ —**angle which** *a* **makes with** *s* **h,k,l** — **indices of diffraction, integers**

In the diffraction direction, the difference between the incident and the diffracted beam through any two lattice points must be an integral number of wavelengths.

The vector form (000) to (mnp):

 $T_{\text{mno}} = \text{ma} + \text{n}b + \text{pc}$

The differences in wavelengths:

$$
\Delta = T_{\text{mnp}} \cdot (s - s_0)
$$

 $=$ (ma + nb +pc) \cdot (s-s_o)

 $=$ ma \cdot (*s*-*s*₀)+n*b* \cdot (*s*-*s*₀)+p*c* \cdot (*s*-*s*₀)

=mhλ**+ nk**λ**+pl**λ

=(mh+nk+pl)λ

3. Reciprocal lattice

4. Ewald sphere

7.3.3. The intensity of diffraction beam

1. The principle of X-ray scattering

For elastic scattering, each electrons scatters the plane wave causing a spherical wave (exp2π*i*(*k*⋅*r*)).

The phase difference is: $\Delta = (\mathbf{r} \cdot \mathbf{s} - \mathbf{r} \cdot \mathbf{s}_0)/\lambda$

The scattered x-ray: $exp2\pi i$ [$\mathbf{r} \cdot (\mathbf{s} - \mathbf{s}_0)/\lambda$] or $exp2\pi i$ [$\mathbf{r} \cdot \mathbf{q}/\lambda$]

The contribution of the scattering of all electrons:

Supposed that there are N_1 , N_2 , N_3 periods along **a**, **b**,**c**, and all the atoms locate on the position of lattice points, *F(q) can be replace with a constant 'f'*. *f is scattering factor of atoms.*

$$
A_{mnp} = f \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} \sum_{n_3=0}^{N_3-1} e^{2\pi i / \lambda (n_1 \mathbf{a} + n_2 \mathbf{b} + n_3 \mathbf{c}) \cdot \mathbf{q}}
$$

For the case of 1D and $f=1$,

$$
A_N = \sum_{n=0}^{N-1} e^{2\pi i n a \cdot q/\lambda} = \frac{1 - e^{2\pi i N a \cdot q/\lambda}}{1 - e^{2\pi i a \cdot q/\lambda}}
$$

The intensity:

In the case of 3-D:

$$
I \propto \left[A_{mnp} \right]^{\frac{1}{2}} = \left| f \right|^2 \frac{\sin^2 \left(\frac{\pi N_1}{\lambda} \mathbf{a} \cdot \mathbf{q} \right)}{\sin^2 \left(\frac{\pi}{\lambda} \mathbf{a} \cdot \mathbf{q} \right)} \cdot \frac{\sin^2 \left(\frac{\pi N_2}{\lambda} \mathbf{b} \cdot \mathbf{q} \right)}{\sin^2 \left(\frac{\pi}{\lambda} \mathbf{b} \cdot \mathbf{q} \right)} \cdot \frac{\sin^2 \left(\frac{\pi N_3}{\lambda} \mathbf{c} \cdot \mathbf{q} \right)}{\sin^2 \left(\frac{\pi}{\lambda} \mathbf{c} \cdot \mathbf{q} \right)}
$$

Therefore,

a⋅**q/**λ=h,**b**⋅**q/**λ=k,**c**⋅**q/**λ=l (h,k,l should be integer) or **a**⋅**q**=hλ,**b**⋅**q**=kλ,**c**⋅**q**=lλ

> 2 2

2 1

 $I\propto \left|F_{hkl}\right|^2 N_1^2N_2^2N$

--- Laue conditions.

$$
I\propto |f|^2 N_1^2 N_2^2 N_3^2 \longrightarrow I\propto |F_{\rm hkl}|^2 N_1^2 N_2^2 N_3^2
$$

2. The intensity of diffraction beam

$$
I \propto |F_{hkl}|^2 N_1^2 N_2^2 N_3^2
$$

\n
$$
I_{hkl} = K |F_{hkl}|^2
$$

\n
$$
F(q) = \int \rho_{cell}(r) \exp(2\pi i q \cdot r/\lambda) d^3 r
$$

\n
$$
F_{hkl} = \iiint \rho(x, y, z) e^{2\pi i (hx+ky+lz)} dxdydz
$$

\n
$$
F_{hkl} = \sum_{j=1}^n f_j e^{2\pi i (hx_j+ky_j+lz_j)}
$$

The directions of the diffraction beams are determined by the cell parameters

The intensity of the diffraction beams are determined by the arrangement of atoms in the cell.

3. systematic absence

Calculation for structure factor

Example A, Body center crystal

$$
F_{hkl} = \sum_{j=1}^{N/2} \left[\frac{\exp(i 2\pi (hx_j + ky_j + lz_j)) + \exp(i 2\pi (h(x_j + 1/2) + k(y_j + 1/2) + l(z_j + 1/2)))}{\exp(i 2\pi (hx_j + ky_j + lz_j)) (1 + \exp(i\pi (h + k + l))} \right]
$$

While $h+k+l = 2n+1$, $F_{hk} = 0$;

systematic absence

Example II. Unit cell has a 2₁ screw axis along the c axis at x=y=0

Equivalent position (x,y,z) and (-x , -y , z+1/2)

systematic absence

Crystal structure which contain centering, glide plane and screw axis will have systematic absences. Namely, some reflections will be systematically absent

7.2.4 Applications of X-ray diffraction

1. Methods

*** Single crystal diffraction**

Monochromatic camera method -- Monochromatic X-ray

Rotation, Oscillation, Weissenberg …

Laue photography --- white X-ray

Diffractometer -- Monochromatic X-ray

Incident beam 2θ Crystal **Diffraction** beam

Radiation sources

X-ray tubes

Synchrotron radiation

Monochromator – e.g.HOPG Filter – e.g. Ni for $CuKa$

Detectors

•Film

- poor sensitivity, high background, low dynamic range
- •Scintillation counters
- good sensitivity, low background, high dynamic range
- •Imaging plates

- good sensitivity, low background, good dynamic range, very efficient data collection

•CCDs and Multiwire detectors

- fast readout, good sensitivity, low background, good dynamic range, very efficient data collection

Example for the indexing of cubic system and its applications

Sample: NaCl

Condition: Cu K α , λ =1.5418Å, R=50mm

- **(1) Measure sample and relative intensity**
- **(2) Calculate the position of diffraction lines (usually 2**θ**)**
- **(3) Calculate** θ **in according to the formulae**
- **(4) Calculate sin2**θ
- **(5)** Calculate $\sin^2\theta_1$: $\sin^2\theta_2$: $\sin^2\theta_3$: $\sin^2\theta_4$:...=3:4:8:11:...
- **(6) Identify Bravais lattice** →**face cubic**
- (7) Index and calculate $h^2 + k^2 + l^2$

(7) Index and calculate $h^2+k^2+l^2$

(9) ρ**= 2.165g/cm3 for NaCl**

$$
n = \frac{\rho V}{\frac{M}{N_0}} = \frac{2.165 \times (5.628 \times 10^{-8})}{23 + 35.5} = 4
$$

One unit cell contains 4 NaCl

Example. Index cubic pattern and calculation lattice parameter

If $λ=1.5418$ Å,

$$
a = \frac{\lambda}{2\sin\theta} \cdot \sqrt{h^2 + k^2 + l^2} = \frac{1.5418}{2\sin 76.79} \times \sqrt{4^2 + 0^2 + 0^2} = 3.16 \text{ Å}
$$

b. Applications of powder diffractions

b. Applications of powder diffractions

Information contained in a Diffraction Pattern

Peak Positions

Crystal system, cell parameters, qualitative phase identification

Peak Intensities

Unit cell contents, quantitative phase fractions

Peak Shapes and Widths

Crystallite size, Non-uniform microstrain

b. Applications of powder diffractions

Applications

Qualitative Analysis Quantitative Analysis Lattice Parameter Determination Crystallite size / size distribution & Lattice Distortion Analysis (Non-uniform microstrain) Crystallinity Analysis Residue Stress Analysis Texture analysis Structure Solution and Refinement Radical distribution function (for amorphous materials)

7.2.5 Electron Diffraction and Neutron Diffraction

1. Electron Diffraction

$$
\lambda = \frac{h}{\sqrt{2meV}}
$$

100 kV ---- 0.00370 nm

a) TEM image of the tip part of one TeO2 nanorod. (b)Enlarged TEM image. (c) The corresponding electron diffraction pattern.

2. Neutron Diffraction

Scatterring of atomic nuclear

7.3 Quasi-crystal, liquid crystal and amorphous Quasi-crystal

Liquid crystal

Amorphous

Quasi-crystal Crystal

There is no translation symmetry.