Chapter 7 Electronic Structure of Diatomic Molecules
7.1 The Hydrogen Moleculelon

1. Accurate solutions

-~
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The H,"” molecule. The nuclei are at a and b; R is the internuclear
distance; r,and ry, are the distances from the the € ectron to nuclei a and
b.

In the BO approximation, the Hamiltonian in atomic unitsis

Since the nuclel are fixed, /R is a constant. The purely electronic
Hamiltionian for H," can be rewritten as

Ii\lel =—1V2—£—£
2 r, r

a

(7.1)

Obviously, the Schroedinger equation is not separable in spherical polar
coordinates. In 1927, Burrau showed that the separation of variables is
possible using confocal elliptic coordinates &, 7, .

e Ny
NN

The elliptic coordinates with two centers



G = - U (7.2)

The ranges of these coordinates are:
O<@p<2r, 1<&<00, -1<p<1 (7.3)

We have

1 1
=3 R(& +7), o =" R(&—7) (7.4)

The H," electronic Hamiltonian (7.1) in the elliptic coordinates has the

form
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Hence the Schroedinger equation is

Ha =

Ha V(& 1n.0)=E Y (S, 9) (7.6)

Let
Y(S.m.0) = LM (17)D () (7.7)

Substitution of (7.7) into the Schroedinger equation (7.6) leads to an

equation in which the variables are separable.
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> O(p) = -m*D(p) (7.8)
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Solving the equation (7.8), we have
1 .
O(p) = —=—=e""
\ 27
where m=0,+1, £2, ...
or
ri when m=0
N2
1
d(p) =3 ——=cosm
2 27 ¢ whenm=1, 2, ...
1 .
——sinm
o @

The solution for M(n) is an infinite series of associated Legendre
functions. L(§) aso involves an infinite series. The requirement that the
wave function be well behaved leads to the conclusion that for a fixed
value of R, only certain values of Eq are alowed (i.e. discrete); this gives

)M =0

(7.10)

(7.12)

(7.12)

a series of eectronic states, corresponding electronic energy

1
E(R =E, +—
(R)=Eq4 =

The electronic energies must be calculated numerically. The series of
energy levels are marked by quantum numbersn, |, and m, whose allowed

values are

n=1 2, 3
| <n-1
m<|

| ‘o, 1, 2, 3 ...

‘ s, p, d f...

(7.13)

(7.14)



m‘ 0 1, 2 3 ...

‘ G, W, O, O...

For the ground electronic state, the quantum number mis zero. At R=cc
the H," ground state is dissociated into a proton and a ground-state
hydrogen atom; hence Eq(oc) = -0.5 hartree. At R=0, the two protons have
come together to form the He' ion with ground-state energy of -2
hartrees.

The E(R) curveisfound to have aminimum at
R. = 1.9972 bohrs ~ 2.0 bohrs = 1.06 A.
Eq =-1.1033 hartree, E(R) =-0.6026 hartree
The ground-state binding energy is
De = 0.1026 hartree = 2.79 eV =64.4 kcal/mol (7.15)

Experiment: R.=1.06 A, D.=2.791eV.

Energy (hartree)

R (bohrs)

Electronic energy with (E) and without nuclear repulsion
for theH," ground state

Similarly, we have the first other electronic states, such as o,*1s, 6425,

Gu* 2S, 6¢2pP, T.2P, ...



2. Approximate Treatment of the H,"
Trial function:
Consider a limiting behavior of the H," ground-state electronic

wave function as R approaches o.

@ =C,s, +G1ls (7.16)
1
1s, = ﬁe , 1s = \/7

When R goes zero, we get the He" ion, which has the ground-state

wave function (Z=2)

2°
Z e 2r

- (7.17)

Note that at the R = 0 the trial function (7.16) goesto

(c + cz)\/Ier
T

Comparing with (7.17), we see that (7.16) has the wrong limiting
behavior a&¢ R = 0. We can fix things by multiplying r, and r, in the
exponentials by a variational parameter k = k(R). For correct limiting
behavior at zero and infinite internuclear distance, we have

K(0)=2, k(x)=1
We thus take as the trial function

Q= Ca¢1sa + Cb¢1sb (7.18)

where

=1/ —€ " Py =4/ —€ (7.19)



The molecular orbital (MO) (7.18) is a linear combination of atomic
orbitals, an LCAO-MO. (Exponential parameter—effective nuclear
charge)

For thetrial function (7.18), the secular equation is

H.-WS, H,-WS,

aa aa al — O
H ba _WSoa H bb _WSDb (7.20)

Theintegrals H, and Hy, are

Ha = [#ia Hodv,  Hy = [ Howdv (720

These two integrals are called Coulomb integrals. Since the H," is a

homonuclear diatomic system, H,, = Hyp. We have

Hy = [#iaHbwdv, Hy=[duHéodv 722

Since H is Hermitian and the functions in these integrals are real, we
conclude that Hy, = Hye. The integral Hy, is called a resonance (or bond)
integral. Since ¢y and ¢;4 are normalized and real. We have

Saa =< ¢1§i | ¢1sa >= j¢£sa¢1sadv =1= Sbb

R 7.23
Sab = J.¢1sa¢lsbdv = Sna ( )
The secular equation (7.20) becomes
Ha-W  Hy-WS,|

H.o.-W=%(H, -S,W) (7.25)
H,_+H H,.,—H

W=——, Wy=—2 2 (7.26)
1+S, 1-S,

These two roots are upper bounds for the energies of the ground and
the first excited electronic states of H,".



We now find the coefficients in (7.18) for each of the roots of the
secular equation. From the linear homogeneous equations in Chapter 5,
we have

(Ha —W)c, +(H,, —S,)c, =0 (7.27)

Substituting in W, from (7.26), we get

C

Fa _1

. (7.28)
@, =Co(P +014) (7.29)

We fix c, by normalization:

<@gy >=lc, P [ + 88 +2- bathy)dV =1
1 (7.30)

& F s,

The normalized trial function corresponding to the energy W, isthus:

¢, = W (1 + 1) (7.31)

For the root W,, we find ¢, = -c, and
1

Py = ﬁ (i — ) (7.32)

Let us evaluate Hy, Hap, and Sy,

Overlap integral Sy,
S, =€ 1+ kR+%k2R2] (7.34)
Coulomb integral Ha,
1
H =t k-tiezmpest
@ = = ( ) (7.35)

Resonance integral Hz,



1

H, = ) kZSab +k(k-2)(1+ kR)e"‘R (7.36)
Thefinal task isto vary the parameter Kk, setting

oW, _0 oW, 0

ok ok

The results are that for the ¢, (1s; +1s,) function (7.31), the parameter k
increases monotonically from 1 to 2 as R decreases from o« to O; for the
@2 (1s; -1s,) function (7.32), k decreases monotonically from 1.0to 0.4 as
R decreases from o t0 0. Since k is positive and never greater than 2, and
since the overlap integral Sy, is positive, we see from (7.36) that the
resonance integral Hy, is always negative.

The ground state 64 1s:
H,,+H, 1
= g s (fa + i)
1 1+ Sab , (01 m ¢1 ¢1sb
k(Re) =1.24

Re = 2.02 bohrs, Binding energy: 2.35 eV. (Expt. 2.00 bohrs, 2.79 eV).
If we omit varying k, but ssimply set it equal to 1, we get
Re = 2.50 bohrs, Binding energy: 1.76 eV.

The excited state 5, 1S :

1
W,=—2__ & S —
2 1-S, 2 525 S, (2 — )

The appearance of the trial functions for c41sand o, 1s
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Charge probability density
In summary, we have formed the two H,™ molecular orbitals (MO), one

bonding and one antibonding, from the atomic orbitals 1s, and 1s,. The

MO energy are given by (7.26) as
_ H ab H aaSab
W,=H,=% 1S, (7.37)

A schematic representation of MO formation fromAQO’s

Nl(d)a - ¢b

I A}




Trial function from hybridized AO’s (Dickinson in 1933)
¢ =[1s, +c(2py).] +[1s, + (2 ), ] (7.38)
where c is variationa parameter, and where
k® —kr 55/2 —ér, 12
D = \/;e “, (2Po)a=(2p,). :We *°r, cosd,
Final results:
K=1246, £=2965 c¢=0.138

Re=2.01 bohrs, Binding energy: 2.73eV.

3. Molecular Orbitalsfor H,"” Excited Sates
Method of thelinear variation function
LCAO-MO'’s

P = G5, +C,25, + Cy(2P,), + 1S, + G525, +C(2Py),

The symmetry of the homonuclear diatomic molecule makes the
coefficients of the atom b orbitals equal to +1 times the corresponding
atom aorbital coefficients:
¢ =[cls, +C,2s, +C3(2p,) ] £[C1S, + C, 25, +C3(2p,),] (7.39)
where the upper sign goes with the even (g) states (i.e. +: g; -: u).

Relative magnitudes of the coefficientsin (7.39)
For the electronic states that dissociate into a 1s hydrogen atom: Large c,
Small ¢, and c;.  Asafirst approximation, we set ¢, and c; equal to zero,

taking



¢ =¢(1s, +1s,) (7.40)
as an approximation for the wave functions of these two states (o4 1s, ,*
1s). The same argument for the two states that dissociate to 2s hydrogen
atom gives as approximate wave functions for them:
@ =Cy(2s,£25,) (7.41)

since ¢; and ¢z will be small for these states.
Next, we have the combinations

(2P0)2 £ (2P), = (2P,)2 £(2P,), (7.42)

giving the o4 2p and c,* 2p molecular orbitals.

oy*2p

% b

(2Ipo)a (z:po)b (x h . -
UaOb( ) .

Gg2P

Similarly, for the other two 2p atomic orbitals, they can be formed the 4

MO's:



(2p,1). +(2P,1)s (7.43)

(2 p+1)a o (2 p+1)b (744)
(2p4). +(2P4)s (7.45)
(2 p—l)a o (2 p—l)b (7-46)

Obviousdly, the MO (7.43) and MO (7.45) have the same energy, i.e. they
are doubly degenerate. The functions (7.44) and (7.46) give the ng*2p.q

and ng* 2p., MO’s. Both have the same shapes and the same energy.

[aE R Es x
(29 @ (4)



Tg" 2Py Tg* 2Py
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(pr)a ,"I (pr)b
(2py)a | (2py)o
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4. Molecular-Orbital Configurations of Homonuclear Diatomic
Molecules

Approximate MO order

The sizes and energies of the MO's vary with varying internuclear
distance for each molecule, and vary as we go from one molecule to
another. Hence we cannot give a definitive order. However, the following
isthe order in which the MO’sfill as we go across the periodic table:

64lS < 6,*1s< 6425 < 6y* 28 < mu2P+1 = Mu2P-1 < 6¢2P < Tg* 2P41
= TCU* 2p.:|_ < Gu* 2p

Each bonding orbital fills before the corresponding antibonding orbital.
The n,2p orbitals are close in energy to the c42p orbital, and it formerly

believed that the 54,2p MO filled first.
MO Nomenclature for Homonuclear Diatomic Molecules

ogls oyfls o¢2s  oyf2s m2p c2Pp  Tmg2p o, 2p

1oy 1o, 204 20y 1my log Ing 20,

MO configuration
Ho:  (og 1s)®. The two bonding electrons give a single bond H-H. De =
475eV <2D(H,)~56¢eV. (H,:De=279¢V)

Hes: (0419)° (5,*15)”.  No net bonding electrons, in agreement with the



well-known fact that the ground electronic state of He, is unstable,
showing no minimum in the potential-energy curve.

He,": (o419)° (o,* 19)". One net bonding electron.

Lis: (0419)? (0,* 15)* (5425)°. Two net bonding electrons.

Bey: KK (5425)* (5,* 25)°. No net bonding electrons.

By KK (6425)° (6,*29)° (n,2p)°. By Hund's rule, the ground state of B
will have 25+1=3. Experimentally, the ground state of B, is observed to

be atriplet (Actually, the ground state is uncertain.)

Properties of Homonuclear Diatomic Molecules in their Ground
Electronic Sates

Molecule Ground Term Bond Order De (eV) Re (A)
H," 2y 1/2 2.8 1.06
H, =y 1 4.75 0.742
He,' N 1/2 3 1.08
He, = 0 — —
Li, = 1 1.1 2.67
Be, =y 0 — —

B, 24 () 1 2.9 1.59
N," 2y 2.5 8.9 1.12
N, = 3 9.9 1.10
0," ’I1, 2.5 6.8 1.12
0, Ty 2 5.2 1.21
F, =y 1 1.6 1.42

Ne = 0 — —




5. Molecular Electronic Terms
For a many-electron diatomic molecule, the component of electronic
orbital angular momentum along the molecular axis has the possible
vaues M (h/2r) where M =0, +1, +2, 43, .... We define A as
A=M|

The following code is used to indicate the value of A.

A‘O 1 2 3 4

Ietter‘E 0 A ®T

For A+#0, there are two possible value of M: +A and -A; so that thereis
a double degeneracy associated with the two values of M, .

Just as in atoms, the individual electronic spin add vectorially to give a
total electronic spin S, whose magnitude has the possible values
JS(S+Dn, with S=0, 1/2, 1, 3/2, .... The component of S along an axis
has the possible values M, where Ms = S, S-1, ..., -S. The quantity
(25+1) is called the multiplicity.

Now consider the molecular electronic terms. A closed-subshell
molecular configuration has both S and A equal to aero and givesriseto a
single 'z term. For example, Hy: (6415)% S=1/2 + (<1/2) =0, M_.=0+0
=0, 1Zg+. Thus, in deriving molecular terms, we need only consider

electrons outside filled subshells.



H," (c419), %2y

mo:m:m=t1,6m=+2; M =+3,-3,+1,and-1. A=3orl.
Possible terms: 'T1, °I1, '®, *0.

o m=tl, T m=t1, M_ =+2,-2,0,0. A=2,0,and 0.
Possibleterms: ‘A, *A, '3, %2, '%, and 2.

mrmm=tl . m=t1 M_=+2,-2,0,0.A=2,0,and 0. 1A, 1z* 3"

Molecular Electronic Terms

Configuration Terms

66 12+’ 3Z+

oT ', *n

nn T %, T, %A, CA
nd L, °i, o, o

c 2yt

o% ' 8 Iy*

e 1

5; &° ’A

82 1Z+, 32-’ I

For homonuclear diatomic molecules, a g or u right subscript is added
to the term symbol to show the parity of the electronic states belonging to
the term.



7.2 SCF Wave Functionsfor Diatomic Molecules

1. Hartree-Fock equation

A very important developmemt in quantum chemistry has been the
computation of accurate self-consistent-field wave functions for many
diatomic and polyatomic molecules.

The molecular wave function—Slater determinant

Xi (%) Zj(xl) o (%)

1 2i(%)  xi(%) o x(Xy)
\P(Xi'XZ"”’XN)_m : : L | (7.47)

Zi (Xy) Zj(XN) o (%)

where the molecular orbital (spin-orbital) is a product of a spatial

orbital and a spin function (either a or B), i.e.

px
The spatial orbitals are found by solving the Hartree-Fock differential
eguations, which are

H Do D) =501 (7.49)
where g is the orbital energy and where the effective Hartree-Fock

Hamiltonian operator is (in atomic units)

H e (1) = _%vf _ Zrz_mr Z[ZJAJ- @®- KA,- D] (7.50)

a '1g j

where the Coulomb operator and the exchange operator are defined by

3,00 =0, 0fl¢,@F o, (751



‘@0 @),
Vs (7.52)

i@, @) =0, @]

r12

The Coulomb integral

<p®13,019.® >=[l9,@F 1o OF dvd,

12

The exchange integral

<pOIK Q1@ >=[0,* @0 (=0 0" o, v,

12

All the molecular orbitals ¢ are eigenfunctions of the same Hartree-Fock
Hamiltonian operator H*"; moreover, this operator is Hermitian. Hence
themolecular orbitals ¢; are (or can be chosen to be) orthogonal.

The expression for the Hartree-Fock molecular energy Epr involves
Coulomb and exchange integrals in addition to the orbital energies

(closed-shell systems):
E. = 22& —ZZ(ZJU - K;j) + Vi (7.53)
i i ]
where the sums are over the n/2 occupied spatial orbitals.
2. MO-LCAO

In 1951 Roothaan proposed expanding the spatial orbitals as linear

combinations of acomplete set of basis functions fy:
Pi= Zcik fy (7.54)
k

Substitution of this expression into the HF equation (7.49) gives

ZcikH T = gizcik fi
2 K



Multiplication by fi* and integration gives
ZCIK(Hjelif _giSjk):O’ j=123,... (7.55)
k

where

HY =<f [H" [f,> S, =<f |f >
For anontrivial solution, we must have
det | Hf’f — & Sjk =0 (7.56)

This is a secular equation whose roots give the orbital energies. The
Roothaan equations (7.55) must be solved by an iterative process, since
the ije” integrals depend on the orbitals ¢, which in turn depend on the
unknown coefficientsc,. —SCF method.

As an example, the SCF MO’s (using a minimal basis set) for the
ground state of Li, [MO configuration (1o,)” (16,)° (254)°] @ R = R are:

1o, = 0.706(1s, +1s,) +0.009(2s, + 2s,) +0.0003(2p,, + 2p,,)
1o, = 0.709(1s, —1s,) + 0.009(2s, — 2s,) + 0.0003(2p,, —2p,,) (7.57)
20, =—0.059(1s, +1s,) + 0.523(2s, + 2s,) + 0.114(2p,, + 2p,)

— Ransil, B.J. Rev. Mod. Phys., 1960, 32, 245.
Our previous simple expressions for these MO’s were
lo, =0 ,1s=2"%(ls, +1s,)
]'O-u =0, *1s= 2_1/2(1Sa _lso)
20, =0,25=2"%(2s, +25,)

(7.58)

Comparison of (7.58) with (7.57) shows the simple LCAO functions to

be reasonabl e first approximations to the minimal-basis-set SCF MO'’s.



Hartree-Fock wave functions are only approximations to the true
wave functions. It is possible to prove that a Hartree-Fock wave function
gives a very good approximation to the electron probability density. The
prime example is the molecular dipole moment.

LiH: Theor. 6.00D, Expt. 5.83D.
NaCl: Theor. 9.18D, Expt. 9.02D.

CO: Theor. HF: 0.27D (C'0), post-HF: 0.12D(C O"); Expt. 0.27D(C'O").

3. Main defects of Hartree-Fock wavefunctions

HF calculations do not give good values for dissociation energies.
The HF energy approaches the wrong limit for large values of R.
N,:  An extended-basis-set calculation gives De = 5.3 eV.
Expt. De=9.9eV
F>: HF cadculations: De=-1.4¢eV
Expt. De = 1.65 eV

H,: HF calculation predicts awrong dissociation limit: H" + H'.

To overcome such defects of Hartree-Fock formalism, post-HF
methodol ogies, such as Cl, CASSCF, MRCI, MP2, CCSD,..., have been

devel oped.



7.3 MO Treatment of Heteronuclear Diatomic M olecules

Suppose the two atoms have atomic numbers that differ only slightly;
an exampleis CO.
MO description

N2 | log low 204 20y 1my 304 lmy 3oy

CO ‘ o0 26 36 40 1In 50 2n 6o

MQO'’s of the same symmetry are numbered in order of increasing energy.
The ground-state configuration
CO: 1c6°26°36%4c” 1n* 56 or KK 36” 46” 1n* 562
Nz (1og)* (161)° (209)° (200)° (1m)"* (30g)”

or  KK(264)” (20,)° (1n,)* (304)°

As in homonuclear diatomic molecules, the heteronuclear diatomic
MQO’s are approximated as linear combinations of atomic orbitals.

For qualitative discussion it is useful to have simple approximations for
heteronuclear diatomic MO’s.

In general, from two AO’s ¢, and ¢,, we can form two MO’s

Cp, +Cp, and C'g, +C, ¢, (7.59)

The coefficients are determined by solving the secular equation:

H.-W H,-WS,

H,-WS, H,-E | (7.60)

(H —W)(H,, _W)_(Hab_\NSab)2 =0 (7.61)



Suppose that Ha, > Hyp, and let f(W) be defined as the left side of (7.61).
The overlap Sy, is less than 1. The coefficient of W2 in f(W) is (1-Sx?)>0;
hence we have f(o«) = f(-oc)=+ oc >0. Because of f(Ha,)< 0 and f(Hp,)< O,
the roots of (7.61) occur where f(W) equals O; one root must be between
+oc and Hg, and the other between the Hy, and -oc. Therefore the orbital
energy of on MO is less than both Ha, and Hy,, while the energy of the

other MO is greater than both Ha, and Hy.

N'T(Co+SaC1)Pa — (C1+SapCo) dpl

C104+Co dp)

A minimal-basisset SCF calculation using Slater orbitals with

optimized exponents gives for the HF MO’s:

16 =1.000(1s; ) + 0.012(2s, ) + 0.002(2p,) — 0.003(1s,, )

20 = -0.018(1s. ) + 0.914(2s, ) +0.090(2p, ) + 0.154(1s,, )

30 =-0.023(1s, ) - 0.411(25;) + 0.711(2p,) + 0516(15,)  (76p)
Iz, =(2p,1)e

Iz 1 =(2p.y)¢



The ground-state MO configuration of HF is 16% 262 36 11",

4o

s 20,2, 20,
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