
Chapter 8 Ab Initio Treatments of Polyatomic 
Molecules 

8.1 Ab Initio Methods and and Semiemprical Methods 

Semiempirical and Ab initio Methods 
Molecular quantum-mechanical methods are classified as either ab 

initio or semiempirical. 
Semiempirical methods use a simple Hamiltonian than the correct 
molecular Hamiltionian and use parameters whose values are adjusted to 
fit experimental data or the results of ab initio calculations. 
HMO, EHMO, CNDO, … 
An ab initio calculation uses the correct Hamiltonian and does not use 
experimental data other than the values of the fundamental physical 
constants. (Ab initio is Latin for “from the beginning” and indicates a 
calculation based on fundamental principles.) 
 Hartree-Fock SCF calculation:  
 Basis set → Atomic orbital → Molecular orbital → Slater determinant 
 → Iterative solution … 
 
Classification of Electronic Terms of Polyatomic Molecules 
Linear Molecules:   
The operator Lz for the axial component of the total electronic orbital 
momentum commutes with the electronic Hamitionian, and the same 
classifications are used as for diatomic molecules; we have such 
possibilities as 1Σ+, 1Σ-, 3Σ+, 1Π, and so on. For linear polyatomic 
molecules with a center of symmetry, the g, u classification is added. 

 
Nonlinear polyatomic molecules: 

There is no orbital angular-momentum operator that commutes with 
the electronic Hamiltionian, and the angular momentum classification of 
electronic terms cannot be used. Operators that do commute with the 
electronic Hamiltionian are the symmetry operators OR of the molecule, 
and the electronic states of polyatomic molecules are classified according 



to the behavior of the electronic wave function on application of these 
operators.  

 
Consider H2O as an example. 

In its equilibrium configuration, water belongs to group C2V with the 
symmetry operators  
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Consider an operator R that commutes with the molecular Hamiltonian 
H that does not involve spin; we have 

        RH = HR 

RHΨ = REΨ 

H(RΨ) = E(RΨ)                        (8.1) 

so that RΨ is an eigenfunction of H with eigenvalue E. We have 

RΨ = λΨ                            (8.2) 
Here Ψ must be an eigenfunction of the symmetry operator R. Thus, the 
electronic states of polyatomic molecules can be classified according to 
the symmetry of the electronic wave function associated with the 
molecular point group. For the term classification of H2O, we have such 
possibilities as 1A1, 1A2, 1B1, 1B2, 3A1, etc. 

As an example, the possible symmetry species of a D6h molecule to 

be 



A1g, A2g, B1g, B2g, E1g, E2g 

    A1u, A2u, B1u, B2u, E1u, E2u 

8.2 The SCF MO Treatment of Polyatomic Molecules 

The purely electronic nonrelativistic Hamiltonian for a polyatomic 
molecule is (in atomic units): 
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Best possible variation function — Hartree-Fock SCF function: The 
form of an antisymmetrized product of spin-orbitals. The MOs are 
usually expressed as linear combinations of basis functions, the 
coefficients being found by solution of the Roothaan equations. 
A sufficiently large basis set → Accurate approximations to the 
Hartree-Fock MO’s. 
A minimal basis set → only rough approximations to the Hartree-Fock 
MO’s, still referred to as SCF molecular orbitals. 
 
Classification of Molecular Orbitals  
As might be expected, the MOs of a polyatomic molecule show the 
same kinks of possible symmetry behavior as the electronic 
wavefunction does. The MOs are therefore classified according to the 
symmetry species of the molecular point group.  
 
For example, the MOs of H2O have the possible symmetry species a1, a2, 
b1, and b2. Lowercase letters are used for MO symmetry species. To 
distinguish MOs of the same symmetry species, we number them in 
order of increasing energy. 1a1, 2a1, 3a1, …; 1b1, 2b1, …                          
 
For benzene C6H6, there are some doubly degenerate symmetry species, 
so some of the benzene MOs occur in having the same energy. 
Specification of the number of electrons in each MO specifies the 



molecular electronic configuration. For example, an (e1g)2 configuration 
of D6h molecule gives the terms 1A1g, 1E2g, and 3A2g.  
A closed-shell configuration gives rise to a single nondegenerate term 
whose multiplicity is 1 and whose symmetry species is the totally 
symmetric.  
 
SCF-MO Wave Functions for Open-Shell States.   

For SCF MO calculations of closed-shell states of molecules and 
atoms, electrons paired with each other almost given precisely the same 
spatial orbital function. A Hartree-Fock wave function in which 
electrons whose spins are paired occupy the same spatial orbital is called 
a restricted Hartree-Fock (RHF) wave function. 

For open-shell states, two different approaches are widely used.  
 

Restricted Open-Shell Hartree-Fock (ROHF) Method 

In the ROHF method, electrons that are paired with each other are 
given the same spatial orbital function. For example, the ROHF wave 
function of the Li ground state is || sss 211 , where the two 1s electrons 
occupy the same spatial MO. The 2s electron in this ROHF function has 
been given spin α. 
 
Restricted Open-Shell Hartree-Fock (ROHF) Method 

Since electron with the same spin tend to keep away from each other 
(Pauli repulsion), the interaction between the 2sα and 1sα electrons 
differs from the interaction between the 2sα and 1sβ electrons, and it 
seems reasonable to give the two 1s electrons slightly different spatial 
orbitals, which we call 1s and 1s′. This gives the unrestricted 
Hartree-Fock (UHF) wave function for the Li ground state as |'| sss 211 , 
where 1s ≠ 1s′. In a UHF wave function, the spatial orbitals of spin-α 
electrons are allowed to differ from those of spin-β electrons. 

 
Comparison of ROHF with UHF 

The UHF wave function gives a slightly lower energy than the ROHF 
wave function and is much more useful in predicting 



electron-spin-resonance spectra. The main problem with the UHF wave 
function is that it is not an eigenfunction of the spin operator S2, whereas 
the true wave function and the ROHF wave function are eigenfunctions 
of S2. 

When a UHF wave function is found, one calculate <S2> for the UHF 
function; if the deviation of <S2> from 21)( +SS  is substantial, the UHF 
wave function should be viewed with suspicion. 
 

Spin contaminant 
The expection value of <S2> for an unrestricted determinant 
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8.3 Basis Functions 

Most molecular quantum-mechanical methods, whether SCF, CI, 
perturbation theory, or coupled cluster, begin the calculation with the 
choice of a basis set. The use of an adequate basis set is an essential 
requirement for success of the calculation. 

 

 



Slater orbitals (STOs) 

A Slater function centered on nucleus a has the form 
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Molecular orbital (MO) 

rr rii c χφ ∑=                         (8.6) 

where the χr’s are the STO basis functions. We have LC-STO MOs. 

For polyatomic molecules, the LC-STO method uses STOs centered on 
each of the atoms. The presence of more than two atoms causes 
difficulties in evaluating the needed integrals. 

 
Gaussian-type orbitals (GTOs) 
Computer evaluation of three- and four-center integrals over STO 

basis functions is very time consuming. To simplify molecular integral 
evaluation, Boys proposed in 1950 the use of Gaussian-type functions 
(GTOs) instead of STOs for the atomic orbitals in an LCAO wave 
function. 

A Cartesian Gaussian centered on nucleus a is defined as 
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where N is the normalization constant, i, j, and k are nonnegative integers, 
and α is positive orbital exponent. 
 
i+j+k = 0,  s-type Gaussian 
i+j+k = 1,  p-type Gaussians,  px, py, pz. 
i+j+k = 2,  d-type Gaussians, 6 d-type Gaussians, 
with the factors x2, y2, z2, xy, xz, yz. They can form five linear 
combinations having the same angular behavior as the five 3d AOs; the 
sixth combination with the factor  
x2 + y2 + z2 = r2 is like a 3s AO.    



 

Spherical Gaussians 
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LC-GTO AO 

A Gaussian function does not have the desired cusp at the nucleus and 
hence gives a poor representation of an AO for small values of ra. To get 
an accurate representation of an AO, we must use a linear combination 
of several Gaussians — LC-GTO AOs. Therefore, an LC-GTO SCF MO 
calculation involves evaluation of very many more integrals than the 
corresponding LC-STO SCF MO calulation. 
Gaussian integral evaluation takes much less computer time than Slater 
integral evaluation. This is because the product of two Gaussian 
centered at two different points is equal to a single Gaussian centered at 
a third point. Thus all three- and four-center two-electron repulsion 
integrals are reduced to two-center integrals. 
 
The STO Basis Set Terminology 
Minimal (or minimum) basis set:  One STO for each inner-shell and 
valence-shell AO of each atom. For example, for C2H2 a minimal basis 
set consists of 1s, 2s, 2px, 2py, and 2pz AOs on each carbon and 1s STO 
on each hydrogen; there are five STOs on each C and one on each H, for 
a total of twelve basis functions; such a set is denoted by (2s1p) for the 
carbon functions and (1s) for the hydrogen functions, a notation which 
is further abbreviated to (2s1p/1s). 
The numbers of basis functions in a minimal set for the first part of the 
periodic table are  

H, He   Li-Ne  Na-Ar  K, Ca   Sc-Kr 

       1      5       9     13      18 

A Double-Zeta (DZ) basis set:  Replacing each STO of a minimal 
basis set by two STOs that differ in their orbital exponents ζ (zeta). 
For example, for C2H2 a double-zeta basis set consists of (1s,1s’), 
(2s,2s’), (2px,2px’), (2py,2py’), and (2pz,2pz’) AOs on each carbon and 



(1s,1s’) STOs on each hydrogen, for a total of twenty-four basis 
functions; this is (4s2p/2s) basis set. 
 
A Split-valence (SV) basis set: Minimal for the inner-shell and double 
zeta for the valence AOs. 
 
Polarization functions:  
A set of three 2p functions (2px, 2py, 2pz) on each hydrogen atom.  
A set of five 3d functions on each “first-row” and “second-row” atom. 
A set of seven 4f functions on each “third-row” atom. 
…… 
A double-zeta plus polarization: DZ+P 
For improved accuracy, higher-l polarization functions can be added. 
 
Contracted Gaussian-type functions 
Instead of using the individual Gaussian functions (8.7) as basis 
functions, the current practice is to take basis function as a linear 
combination of a small of Gaussians, according to 
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where the gu’s are Cartesian Gaussians [Eq.(8.7)] centered on the same 
atom having the same i, j, k values as one another, but different α’s. The 
coefficients dur are constants that are held fixed during the calculation. 
In (15.12), χr called a contracted Gaussian-type function (CGTF) and 
the gu’s are called primitive Gaussians. 
By using contracted Gaussians instead of primitive Gaussians as basis 
set, the number of variational coefficients to be determined is reduced, 
which gives large savings in computational time with little loss in 
accuracy if the contracted coefficients dur are well chosen. 
Several methods exist to form contracted Gaussian sets. Minimal CGTF 
sets are usually formed by fitting STOs. Each STO is approximated as a 
linear combination of N Gaussian functions (called STO-NG basis set), 
where the coefficients in the linear combination and the Gaussian orbital 
exponents are chosen to give the best least-square-fit to the STO, .  



Another way to form contracted Gaussians is to start with atomic CTF 
SCF calculations. Huzinaga used a (9s5p) basis set of uncontracted 
Gaussians to do SCF calculations on the atoms Li-Ne. For example, for 
the ground state of the O atom, the optimized orbital exponents of the 
nine s-type basis GTFs and the expansion coefficients were found to be 
 

Exponents    1s Coefficients    2s Coefficients 
g1  7817         0.0012           -0.0003 
g2   1176         0.009            -0.002 
g3  273.2        0.043            -0.010 
g4  81.2         0.144            -0.036 
g5  27.2         0.356            -0.095 
g6  9.53         0.461            -0.196 
g7  3.41         0.140            -0.037 
g8  0.94        -0.0006            0.596  
g9  0.285        0.001             0.526 

 
Suppose we want to form a split-valence [3s2p] set of contracted GTFs 
for O. We can take following contracted scheme 
 
1s = N(0.0012g1 + 0.009g2 + 0.043g3 + 0.144g4 +0.356g5 + 0.461g6 

+0.14g7) 
2s = N’(-0.196g6 + 0.596 g8) 
2s’ = g9 
…… 
 
Standard basis sets:  (by Pople and coworkers) 
STO-3G, 3-21G, 4-31G, 6-31G, 6-311G,… 
3-21G*, 6-31G*, … 
In the 3-21G set, each inner-shell AO (1s for Li-Ne; 1s, 2s, 2p for Na-Ar; 
and so on) is represented by a single CGTF that is a linear combination 
of three primitive Gaussian; for each valence-shell AO (1s for H; 2s and 
the 2p’s for Li-Ne; …), there are two basis functions, one of which is a 
CGTF that is a linear combination of two Gaussian primitives and one 



which is a single diffuse Gaussian.  
 
ECP basis sets 
 
Such basis sets are available in the widely used ab initio programs 
GAUSSIAN 98, GAMESS, HONDO, etc. 
 

8.4 The SCF MO Treatment of H2O 

A minimal-basis-set MO treatment 
Basis functions:  O1s, O2s, O2px, O2py, O2pz; H11s, H21s. 
Linear combinations of these 7 basis AOs give LCAO approximations to 
the seven lowest MOs of water. 
 
Symmetry-adapted basis functions. 
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Each oxygen AO transforms according to one of the symmetry species 
of water and can serve as a symmetry orbital. However, neither of the 
two hydrogen 1s AOs belongs to a symmetry species of water, and we 
must construct two symmetry orbitals from these AOs. Consider the 
following linear combinations: 
        H11s + H21s               (8.10) 
        H11s - H21s               (8.11) 
Examination of the effects of the other three symmetry operators shows 
(8.10) and (8.11) to belong to the symmetry species a1 and b2, 



respectively.  
The seven basis symmetry functions and their symmetry species are 
then 

    χ1      χ2       χ3       χ4          χ5          χ6     χ7 

H11s+H21s   O1s  O2s   O2pz  H11s-H21s  O2py  O2px 

a1      a1     a1     a1       b2      b2     b1 

Now consider the SCF secular determinant det (Frs－εiSrs). We assert that 

    0>==<
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whenever χr and χs belong to different symmetry species. Moreover, 
since two eigenfunctions of a Hermitian operator that correspond to 
different eigenvalues are orthogonal, we have  

   Srs ≡ <χr|χs> = 0            (8.13) 

From (8.12) and (8.13) it follows that the use of symmetry orbitals puts 
the secular determinant of water in block-diagonal form, each block 
corresponding to a different symmetry species; the blocks are 4×4, 2×
2, and 1×1. 
The set of Roothaan simultaneous equations (for H2O), i.e., 
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then breaks up into one set of four simultaneous equations (a1 
symmetry), one set of two simultaneous equations(b2 symmetry), one set 
of one “simultaneous” equation (b1 symmetry). Therefore, four of the 
lowest seven water MOs are linear combinations of the four a1 
symmetry orbitals; these four MOs must have a1 symmetry. Similarly, 
we have two MOs of b2 symmetry and one MO of b1 symmetry. 
 
 
 
 
 
 



The forms of the lowest MOs of H2O are then 
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The next step in SCF MO calculation is to determine the orbital energies 
and the coefficients of the symmetry orbitals. 
Pitzer and Merrifield did an H2O minimal-basis-set calculation [J. 
Chem. Phys. 1970, 52, 4782]. 
Orbital energies in hartree: 

1a1, -20.56; 2a1, -1.28; 1b2, -0.62; 3a1, -0.47; 1b1, -0.40. 

The ground-state electronic configuration of this ten-electron molecule is 

(1a1)2(2a1)2(1b2)2(3a1)2(1b1)2 

The ground state has a closed-subshell configuration and is a 1A1 state. 

The five lowest SCF MOs at the experimental geometry are 

1a1 = 1.000(O1s) +0.015(O2s’) + 0.003(O2pz) - 0.004(H11S+H21s) 

2a1 = -0.027(O1s) +0.820(O2s’) + 0.132(O2pz) + 0.152(H11S+H21s) 

1b2 = 0.624(O2py) + 0.424(H11S+H21s)                   (8.16) 

3a1 = -0.026(O1s) - 0.502(O2s’) + 0.787(O2pz) + 0.264(H11S+H21s) 

1b1 = O2px 

The O2s’ orbital in (8.16) is an orthogonalized orbital: 

   O2s’ = 1.028[(O2s)-0.2313 (O1s)]                   (8.17) 



Bonding in water 

The lowest MO, 1a1, is essentially a pure nonbonding 1s oxygen AO. 

The next MO, 2a1, is the combination of the hybridized O2s and O2pz 
orbitals with the H11s and H21s orbitals, which gives electron 
probability-density buildup in the region enclosed by the three nuclei. 
Therefore the 2a1 MO contributes to the bonding in water. 
 
Consider the 1b2 MO. The 2py oxygen AO has its positive lobe on the H1 
side of the molecule, so that the positive lobe of O2py adds to H11s in the 
1b2 MO, giving electron charge buildup between the H1 and O nuclei. 
Similarly, the negative lobe of O2py adds to –H21s, giving charge buildup 
between O and H2 in this MO. Hence 1b2 is a bonding MO. 
 
In 3a1 the hybridization of the 2s and 2pz oxygen AOs concentrates 
electron probability density along the negative z axis, away from the 
hydrogens; hence, this MO contributes only modestly to the bonding, and 
is best described as mainly a lone-pair MO with some bonding character. 
 
The 1b1 MO is a nonbonding lone-pair 2px oxygen AO. 

The shapes of the bonding MOs 2a1 and 1b2 in water. 
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The unoccupied 4a1 and 2b2 MOs of water: 

4a1 = 0.08(O1s) + 0.84(O2s’) + 0.70(O2pz) – 0.75 (H11s +H21s) 

2b2 = 0.99(O2py) – 0.89(H11s-H21s) 

These MOs are antibonding. 
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Formation of the H2O MOs from the minimal basis AOs.  

 

 

 

 

 



 

 H2O SCF MO Calculations 

 

Basis Set Energy/Eb µ/D θ ROH/Å 

STO-3G -74.97 1.69 100.0° 0.990 

3-21G -75.59 2.44 107.6° 0.967 

Minimal STO -75.70 1.92 100.3° 0.990 

6-31G* -76.010 2.19 105.5° 0.947 

140CGTFs -76.0673 1.98   

HF-limit -76.0675  106.3° 0.940 
Nonrelativistic 

fixed-nuclei energy -76.440    

Expt. values -76.480 1.85 104.5° 0.958 

 

Koopman Theorem 

The energy required to remove an electron from a closed-shell atom 
or molecule is reasonably well approximated by minus the orbital energy 
ε of the AO or MO from which the electron is removed.  

          Ii = -εi                  (8.18) 

 
Comparison of Hartree-Fock orbital energies (in eV) with the 
experimentally observed ionization energies for H2O. 

         1a1    2a1   1b2   3a1   1b1    

Theory:  559.5  36.7  19.5  15.9  13.8 

Expt.    539.7  32.2  18.5  14.7  12.6 



 

8.5 Population Analysis 

For the set of basis functions χ1, χ2, ……, χb, each MO φi has the form 

bbiiiss sii cccc χχχχφ +++== ∑ 2211          (8.18) 

For simplicity, we shall assume that the csi’s and χs’s are real. The 

probability density associated with one electron in φi is 
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Integrating this equation over three-dimensional space and using the fact 

that φi and the χs’s are normalized, we get 
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where the S’s are overlap integrals: 212112 dvdvS χχ∫= , and so on.  
Mulliken proposed that the terms in (8.20) be apportioned as follows. 
One electron in the φi contributes 2c1i

2 to the net population in χ1, 2c2i
2 to 

the net population in χ2, and so on, and contributes 2c1ic2iS12 to the 
overlap population between χ1 and χ2, and so on. 

Let there be ni electrons in the MO φi (ni =0, 1, 2), we have  

   
2
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Summing over the occupied MOs, we obtain the Mulliken net population 

nr in χr, and the overlap population nr-s for the pair χr and χs as  

   ∑∑ −− ==
i

isrsr
i

irr nnandnn ,, ,              (8.22) 

The sum of all the net and overlap populations equals the total number of 

electrons in the molecule:  
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It is convenient for some purposes to apportion the electrons among the 

basis functions only, with no overlap populations. Mulliken proposed that 

this be done by splitting each overlap population nr-s equally between the 

basis functions χr and χs. This gives a gross population Nr in χr, namely, 
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The sum of all the gross populations equals the number of electrons in the 

molecule: nNb

r r =∑ =1 . 

The gross atomic population NB for atom B: 
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The notation r∈B denotes all basis functions centered on atom B. 

The net charge qB on atom B with atomic number ZB is defined as 

qB ≡ ZB – NB 

A small change in basis set can produce a large change in the calculated 

net charges. 

         Net charges on each H atom 

          CH4   NH3   H2O 
STO-3G   0.06   0.16   0.18 

3-21G     0.20   0.28   0.36 

A comparison of values calculated with the same basis set correctly 

shows that the charge on each H atom as the electronegativity increases 



from C to O. 

 

8.6 Localized MOs 

Experimentally, molecular properties can be analyzed as the sum of 
contributions from individual bonds and lone pairs (Localized MOs). For 
example, the O－H stretching vibrational band occurs at nearly the same 
frequency no matter whether it is HOH or HOCl or CH3OH that is 
observed.  

However, the photoelectron spectroscopy of a molecule has no such 
the localized behavior, in consistent with the MO theory. For example, 
the ground state of CH4 has the closed-shell configuration 
(1a1)2(2a1)2(1t2)6 and is a 1A1 state. Calculated MO energies and 
experimental ionization energies as follows: 
 
Calc.     14.7 eV (1t2)   25.3 eV (2a1) 
Expt.     12.7-16 eV     23 eV    
 

In the MO formalism, each of the bonding MOs is delocalized over 
the entire molecule, and it is seemingly inconsistent with the existence of 
individual bonds in the molecule. Actually, MO theory can explain the 
observed near invariance of a given kind of chemical bond, as we now 
show. 

The MO approximation to the ground state of water is a Slater 
determinant of the form 
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where T is a unitary matrix. According to (8.27), the delocalized MOs are 

transformed into the localized MOs. 

 

  |||||||||||| Φ=Φ=Φ===Ψ TTUuuu m21    (8.28) 

Despite the different verbal descriptions, the wave functions (8.26) and 

(8.28) are identical.  

For example, the wave function of the ground state of water:  

Localized MOs 

|)()()()()()()()()()(| OlOlOlOlOHbOHbOHbOHbOiOi 22112211=Ψ  

Delocalized MOs 

|| 1111221111 1133112211 bbaabbaaaa=Ψ  

 

   Rough sketches of the localized bonding MOs in H2O 
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8.7 The SCF MO treatment of methane, ethane, and ethylene 

 



 

 


