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@ The Nobel Prize in Chemistry 2013 Nobel Prize in Chemistry 1981
Martin Karplus, Michael Levitt, Arieh Warshel Fukui & Hoff
uKul ormmann

The Nobel Prize 1in
Chemistry 2013

© Nobel Media AB Photo: Keilana via Photo: Wikimedia
Martin Karplus wikimedia Commons Commons
Michael Levitt Arieh Warshel

The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus,
Michael Levitt and Arieh Warshel "for the development of multiscale
models for complex chemical systems".
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What is Chemistry

The branch of natural science that
deals with composition, structure,
properties of substances and the
changes they undergo.

Chemistry = Chem + is + try ?



Structure vs. Properties

The structure determines properties
Properties reflect the structure



Types of substances

Atoms Geometric Structure
Molecules

Clusters Size

Congeries makes the difference

Nano materials

Electronic Structure
Bulk materials



Basic Units

Atom

The basic building block of all h.—\ﬁ
matter. The smallest particle of { \
an element that has the same e
properties as the element. ;"_'- )

bl ]
Composed of an electron cloud 7y
and a central nucleus.



Atomic Structure

All the matter around you is made of

atoms, and all atoms are made of only g,

three types of subatomic particle, P et

protons, electrons, and neutrons. ( 0profon (+)
{

All protons are exactly the same, all \\ heuton (@

neutrons are exactly the same, and all e 7

electrons are exactly the same.

There are many elements in the PERIODIC TABLE. Over 100!
The thing that makes those elements different is the number of
electrons, protons, and neutrons.



History of
Atomic Models

Understanding
atomic structure 1S a
first step to
understand structure
of the matter

Dalton (1803)

+
¢ + @ Thomson (1904)
@ + +/_\ (positive and negative charges)

Rutherford (1911)
(the nucleus)

%\
®)
Bohr (1913) @ j )
LS
o aCxti Eht
i Friil . _:

(energy levels)

R

L
Schrodinger (1926) e g
(electron cloud model) Syt ies



Basic Units

Molecule

The simplest structural unit of a
substance that retains the
properties of the substance.

Composed of one or more
atoms.




Understanding Molecular Structure

Inorganic 0,; H,0, Si, Pt, TiO,, etc.
molecules

Organic CH,; C,H,, C;H,, CH,OH, etc.

molecules

Bio-molecules DPNA, RNA, Protein,
Enzyme, etc.



Inorganic Chemistry =~ Material Science

Organic Chemistry Surface Science
Catalysis Life Science
Electrochemistry Energy Science
Bio-chemistry Environmental Science
etc. etc.

Structural Chemistry



Role of Structural Chemistry
in Surface Science
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Surface structures of Pt single crystal
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Different surfaces do different chemistry



Synthesis of Tetrahexahedral Pt Nanocrystals with High Index Faces

and High Electro-Oxidation Activity
Na Tian, Zhi-You Zhou, Shi-Gang Sun*, Yong Ding and Zhong Lin Wang*

Science, May 4, 2007
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Platinum NCs of very unusual tetrahexahedral (THH) shape were
prepared at high yield by an electrochemical treatment of Pt
nanospheres



Synthesis of Tetrahexahedral Pt Nanocrystals with High
Index Faces and High Electro-Oxidation Activity
Sc1ence, May 4, 2007
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These high-energy surfaces are surprisingly thermal (to 800 °C) and chemical stable and

exhibit much enhanced (up to 400%) catalytic activity for equivalent Pt surface areas
for electro-oxidation of small organic fuels such as formic acid and ethanol.




Model and practical catalysts
The single crystal planes vs nanparticles’ surface structure

Rhombic Dodecahedron

(110)

(310)\Tetrahexahedron

Hexoctahedro

(311)

m 5% 21 . an ™ 100 é 2,
‘ ZONE[011] % a1 [Oli]® (100)
(311 > Trapezohedron

Octahedron Cube

Unit stereographic triangle of Unit stereographic triangle of
fcc single-crystal and models polyhedral nanocrystals bounded
of surface atomic arrangement by different crystal planes

Zhou, Tian, Sun, Faraday Discuss., 2008,140:81-92
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Small Mol_tructures

Angew. Chem. Int. Ed. 2008, 47, 8901 ' '
Angew. Chem. Int. Ed. 2009, 48, 4808 J. Am. Chem. Soc. 2009, 131, 3152

Angew. Chem. Int. Ed. 2009, 48, 9344 J. Am. Chem. Soc. 2009, 131, 4602
J. Am. Chem. Soc. 2009, 131, 13916



Role of Structural Chemistry
in Materials Science



C Crystal Structures

= &
* Diamond: Insulator or wide bandgap
semiconductor:
* Graphite: Planar structure:
sp? bonding =~ 2d metal (in plane)

Structure makes the difference

=

“Buckyballs” (Cgp) —>o>—>>—>—>>—>
“Buckytubes™ (nanotubes),
other fullerenes —»—>—




The many faces of sp?-bonded carbon

02 B
A
e 4 » fullerenes

4
T

carbon nanotubes (CNTs)

dimensional carbon atoms



Zheng LS (F3f=%)), et al.
Capturing the labile fullerene[50] as C50CI10
SCIENCE 304 (5671): 699-699 APR 30 2004
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Shell-isolated nanoparticle-enhanced Raman
spectroscopy

Jian Feng Li', Yi Fan Huang', Yong Ding”, Zhi Lin Yang', Song Bo Li', Xiao Shun Zhou', Feng Ru Fan'~, Wei Zhang',
Zhi You Zhou', De Yin Wu', Bin Ren', Zhong Lin Wang” & Zhong Qun Tian'



Role of Structural Chemistry
in Life Science



What do proteins do ?

Proteins are the basis of how biology gets things
done.

* As enzymes, they are the driving force behind
all of the biochemical reactions which makes
biology work.

* As structural elements, they are the main
constituents of our bones, muscles, hair, skin
and blood vessels.

* As antibodies, they recognize invading
clements and allow the immune system to get
rid of the unwanted invaders.




What are proteins made of ?

* Proteins are necklaces of amino acids, 1.e. long chain
molecules.

Primary protein structure
is saquence of a chain of amino acids

Amino Acid



Form determines function

* Suppose you have some molten iron. ) A
You may turn it into nails, hammers, c 8\
wrenches, etc. What makes these Qﬂ\
tools different from each other 1s their
form (i.e. their shape and structure)

* Similarly proteins, though basically ~ T

being built as similar chains of amino
acids, very rapidly fold onto their

own “correct” form, so as to be able
to carry out the function that is \\\\\
assigned to them



AN

1) fold ?

Evidence indicates that the infectious agent in
transmissible spongiform encephalopathy is a
protein. Stanley Prusiner pioneered the study of
these proteins and received the Nobel Prize in The “ki ”»

- : e “kiss of death
medicine (1997). He has named them prion

proteins (referred to as PrP) or simply prions. A person ingests an abnormally-shaped prion from
contaminated food or other contaminated sources.

How do prions (At

Proteins have primary structures, which is their The abnormally-shaped prion gets absorbed into the
sequence of amino acids, and secondary bloodstream and crosses into the nervous system.
structures, which is the three dimensional shape
that one or more stretches of amino acids take.
The most common shapes are the alpha helix and
the beta conformation.

The abnormal prion touches a normal prion and
hanges the normal prion's shape into an abnormal one,
thereby destroying the normal prion's original function.

Both abnormal prions then contact and change the

.. shapes of other normal prions in the nerve cell.
The normal protein is called PrPC (for cellular). Its P P

secondary structure is dominated by alpha helices. | The nerve cell tries to get rid of the abnormal prions by

The abnormal, disease producing protein called ‘ Clumping”them tOQtJ%t,her {nt hsmatl)l sacs. lBeQauseﬂghe
. : nerve cells cannot digest the abnormal prions, they
PrPSc (for scrapie), has the same primary accumulate in the sacs
structure as the normal protein, but its secondary that grow and engorge the nerve cell, which eventually
structure is dominated by beta conformations. dies.
_ N When the cell dies, the abnormal prions are released to
Examples of alpha helices )\7 infect other cells.
and beta sheets S f / 2% ¢ /g Large, sponge-like holes are left where many cells die.

L r £ % {

N/ //Z
CO) .4 '_: ()
. N’_‘/ v /dz'}’/i‘ i



Structural Chemistry

* Itis a subject to study the microscopic
structures of matters at the
atomic/molecular level using Chemical
Bond Theory.

 Chemical bonds—structures—properties.



Objective of Structural Chemistry

1) Determining the structure of
known substance

2) Understanding the structure-
property relationship

3) Predicting the substance with
specific structure and property



Outline & Schedule

Chapter 1 Basics of quantum mechanics 4
Chapter 2 Atomic structure 4
Chapter 3 Symmetry 3
Chapter 4 Diatomic molecules 3
Chapter 5/6 Polyatomic structures (4+2) 5
Chapter 7 Basics of Crystallography 4
Chapter 8 Metals and Alloys 1
Chapter 9 lIonic compounds 3



Chapter 1

The basic knowledge of quantum
mechanics



1.1 The failures of classical physics

+ Classical physics: (prior to 1900)

Newtonian classical mechanics
Maxell's theory of electromagnetic waves
Thermodynamics and statistical physics



1.1.1 Black-body radiation



Black-Body Radiation

“Blackbody Radiation”

| Visble Licht

experiment

12000K

[nteasity ——w

6000K

vgEelangl®: (gt —

A large number of experiments
revealed the temperature-
dependence of A . and
independence on the substance
made of the black-body device.

Classical solution:

Rayleigh-Jeans Law
2v°

2
C

(long wave length, high T)

B (T)="""kT

Wien Approximation

3
2

B.(T)= e

2

C

(high energy, Low 1)

It can not be explained by classical thermodynamics

and statistical mechanics.



Solution to Blackbody problem

(problem: theory diverges at low wavelength)

solution:

« 1900: Max Planck proposed a formula
which fit the experimental data.

» required that the energy in the atomic

vibrations of frequency v was an integer n
times a small, minimum, discrete energy,

E =nhv (n=0,1,2,...)
* h 1s now known as Planck's constant,
=6.62x 1034 s

« no known physical basis for the “fitting”

Max Karl Ernst Ludwig Planck (April 23, 1858 — October 4, 1947) was a German
physicist who is regarded as the founder of the quantum theory, for which he
received the Nobel Prize in Physics in 1918)




Black Body Radiation

Planck showed using quantum mechanics that a black
body would emit radiation of the form

2hv? [ ¢*
B,(T)= SV

Many stellar sources can usefully be approximated to be
black bodies

. 2 o (hl.gh energy, lo.w T).
risd B (T)= e Wien's Approximation
C’
2 (long wavelength, high T)
hv 2v _
7 << B (T)= kT  Rayleigh-Jeans Law
C
x_ x =
"= I Sy g —o0 < x < o0

1! 3!



1.1.2 The photoelectric effect



Nagging problem 2

“Photoelectron effect”

Observed by Hertz in 1887

Light causes electrons to come
out of a metal, but only above
a threshold frequency v

(1.e., a threshold energy hv)




The photoelectric effect

Evacuated
ube

Light-
sensitive

I

¥ metal
J plate

Positive /




The Photoelectric Effect

E
m
Light
E = hv
Electron
° Slope = h
O
AN , v
\ 7/
Metal —qd

(a) (b)

1. The Kkinetic energy of the ejected electrons depends

linearly on the frequency of the light.
2. There is a particular threshold frequency for each metal.
3. The increase of the intensity of the light results in the

increase of the number of photoelectrons.




Amplitude of a Wave

Higher

amplitude

(brighter)
Lower
amplitude
(dimmer)

Wavelength, A

Classical physics: The energy of light wave should be directly
proportional to intensity and not be affected by frequency.




Explaining the Photoelectric Effect

* Albert Einstein (1879-1955, 1921 Nobel Prize in Physics)
— Proposed a corpuscular theory of light (photons)
— won the Nobel prize in 1921

1. Light consists of a stream of photons. The energy of a
photon 1s proportional to its frequency.

€ =hv h = Planck’s constant
2. A photon has energy as well as mass. m= hv /c?
3. A photon has a definite momentum. p=mc= hv /c=h/A

4. The 1ntensity of light depends on the photon density




Explaining the Photoelectric
Effect

Therefore, the photon’s energy 1s equal to the
electron’s kinetic energy added to the electron’s
binding energy

- E E + E

photon = binding Kinetic energy

* hv=W+E,




Example I. Calculation of Energy from Frequency

Problem: What 1s the energy of a photon of electromagnetic radiation
emitted by an FM radio station at 97.3 x 10% cycles/sec?

What is the energy of a gamma ray emitted by Cs!37 if it has a frequency
of 1.60 x 10%9/s?

Plan: Use the relationship between energy and frequency to obtain
the energy of the electromagnetic radiation (E = hv).

Solution:
Ephoton =hv = (6.626 x 10-3%J5)(9.73 x 10°/s) = 6.447098 x 10-4]
Ephoton =6.45x10-%#]
Egamma ray =hv =(6.626 x 10°%Js )( 1.60 x 10°%/s )=1.06 x 10-13]
E =1.06 x 10-13J

gamma ray



Example Il: Calculation of Energy from Wavelength

Problem: What 1s the photon energy of of electromagnetic radiation
that 1s used 1n microwave ovens for cooking, if the wavelength of the

radiation 1s 122 mm ?

Plan: Convert the wavelength into meters, then the frequency can be
calculated using the relationship;wavelength X frequency = c (where
c is the speed of light), then using E=hv to calculate the energy.
Solution:

wavelength =122 mm =1.22 x 10 "'m

c _3.OOX108WZ/S
wavelength  1.22x10"'m

frequency = =2.46x%x10" /s

Energy = E = hv = (6.626 x 10-34J5)(2.46 x 101%/s) = 1.63 x 10-23 J



Example lll: Photoelectric Effect

* The energy to remove an electron from potassium
metal is 3.7 x 10 -1°J. Will photons of frequencies of

4.3 x 10'%/s (red light) and 7.5 x 104 /s (blue light)
trigger the photoelectric effect?

« E_,=hv=(6.626 x10-34Js)(4.3 x10'4 /s)
E. ,=28x10"19]

e E,..=hv=(6.626x10"3Js)(7.5x10'/s)
E .=50x10"19]



The binding energy of potassiumis = 3.7x10-1°]

The red light will not have enough energy to knock an
electron out of the potassium, but the blue light will eject
an electron !

E Total — E Binding Energy T EKinetic Energy of Electron
E Electron ETotal - E Binding Energy
E =50x10-J - 37x10-7)

Electron

= 1.3 x 10-PJoules




1.1.3 Atomic and molecular
spectra



The Line Spectra of Several Elements
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Nagging problem 3

Spectral lines in gases

o
_In_ {L_-I--I'“
m '-

planetary model:

« the electrons are like planets - orbit the nucleus

« light of energy E given off when electrons change orbits (i.e., different
energies) - instead of gravitational force (for planets), use electrostatic
force - same analogous effect

« spectral lines are inconsistent with planetary model of the atom - why
only discrete energies?



The Bohr Model Explanation of the
Three Series of Spectral Lines
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The Energy States of Hydrogen Atom

Bohr derived the energy for a system consisting of a nucleus
plus a single electron

€g- H Het Li*"

He predicted a set of quantized energy levels given by :

2
F = R n=12.3.. R=13.6¢V
n n2 9“9

- R is called the Rydberg constant (2.18 x 10-13J)
- n is a quantum number; - Z is the nuclear charge

] ]
AE=E, —E,=-RZ'(——-—)
n n,

| |_ hv = h C Photon energy in absorption and
AL |=hv = 2 emission along electron transition.



Problem: Find the energy change when an electron changes from the
n=4 level to the n=2 level in the hydrogen atom? What 1s the wavelength
of this photon?

Plan: Use the Rydberg equation to calculate the energy change, then
calculate the wavelength using the relationship of the speed of light.

Solution:
~18 1 1
AE =2.18x10""J( ~— 2)
ny n,
1

g g, |
=2.18x10 18J(42 -

)= —4.09%x107""J
2
1 2

hxc (6.626 x 10-4Js)( 3.00 x 10° m/s)
AE 4.09 x 10-19J
=4.87 x 10" m =487 nm

A=



1.1.4 The diffraction of
electrons



Different Behaviors of Waves and Particles

Direction of

Particle

Trajectory

M“‘ah of a pebble

light wave
iy
iy
e -
Alr ¥
Water i
Angle of |
refraction i
il
Crests of
waves

Beam of
particles




The diffraction of electrons _

Electron beam (SOGV) STM image of Si(111) 7x7 surface

S1 Crystal

235 pm (2.35A)




1.2 The characteristic of the
motion of microscopic particles



1.2.1 The wave-particle duality
of microscopic particles

In 1924 de Beoglie suggested that microscopic
particles might have wave properties.

Electron as waves

Spatial image of the
confined electron states
of a quantum corral. The
corral was built by
arranging 48 Fe atoms
on the Cu(111) surface
by means of the STM tip.
Rep. Prog. Phys.
59(1996) 1737




De Broglie assumed that the wave-particle

relationship in light is also applicable to particles of
matter, I.e.

E=hv mec: E  hv h
p:r]/}\‘ C C Vﬂu 2/

A=h/p = h/my

h = Planck’s constant,
p = particle momentum,
A = de Broglie wavelength




de Broglie Wavelength

Example: Calculate the de Broglie wavelength of an
electron with speed 3.00 x 10°m/s.

electron mass =9.11 x 103! kg

velocity = 3.00 x 10° m/s

o _h 6.626 x 10-34Js
~ mv (9.11 x 10-3%kg )( 1.00 x 10°m/s)

2
J =—k% hence
S

Wavelength A =2.42 x 101 m = 0.242 nm



The moving speed of an electron is determined by the
potential difference of the electric field (V)

1,

5 mv- =elV 1eV=1.602x10"1° J
If the unit of V is volt, then the wavelength is:
A=h/mv= h m°v’: =2meV

\/Zme\/V
2% 9.110x10 x1.602x10™° vV
- 1.226x10™° (m)
v




The de Broglie Wavelengths

Particles

Slow electron
Fast electron
Alpha particle
One-gram mass
Baseball

Earth

of Several particles
Speed (m/s)

Mass (g)
9x10-28

9x 10-28
6.6 x 10-2*
1.0

142

6.0 x 10?7

1.0

5.9 x 109

1.5 x 107

0.01

25.0

3.0 x 10%

A (m)
7%x10-4

1 x10-10
7 x 10-15
7 x10-2°
2 x 10-34

4 x 10-63



The wave-particle duality
e Wave (i.e., light)
- can be wave-like (diffraction)
- can be particle-like (p=h/A)
* Particles
- can be wave-like (A =h/p)

- can be particle-like (classical)



Discussion:

For photon:
\

p=mec,

E=hv=h (¢c/A) = pc =mc? # p?/2m

For particles:

p=mv,

_/
E=(1/2) mv?= p?/2m=pv/2 # pv

E=h v
p = h/A



1.2.2 The uncertainty principle



The more precisely the position is determined, the less
precisely the momentum is known in this instant, and
vice versa.

--Heisenberg, uncertainty paper, 1927



OP—APzé/l

sin0=OC/OA=%l/%D=/1/D

p. = psind
Ap = psinf (p,, =0)
=p/1/D:ﬁ/1/D:£
A D
AxAp = h
Include higher order,
AxAp > h

A quantitative version




Measurement

*Classical: the error in the measurement
depends on the precision of the apparatus,
could be arbitrarily small.

Quantum: it is physically impossible to
measure simultaneously the exact position and
the exact velocity of a particle.




Example

The speed of an electron 1s measured to be 1000 m/s to
an accuracy of 0.001%. Find the uncertainty in the
position of this electron.

The momentum 1s

p = mv=(9.11x 103" kg) (1 x 10° m/s)
=9.11 x 10-* kg.m/s

Ap=px0.001%=9.11 x 10 kg m/s

Ax=h/Ap=6.626x 1034/ (9.11 x 10-?)
=7.27 x 102 (m)




Example

The speed of a bullet of mass of 0.01 kg 1s measured to
be 1000 m/s to an accuracy of 0.001%. Find the

uncertainty in the position of this bullet.

The momentum 1s
p = mv=(0.01kg)(1x10°m/s) =10kg.m/s
Ap=px0.001%=1x 10" kg m/s
Ax=h/Ap=6.626x 1034/ (1 x 10)

= 6.626 x 10739 (m)



Example:

The average time that an electron exists in an excited state
is 10* s. What is the minimum uncertainty in energy of
that state?

AE At = h AE = h/ At

AE. . = h/At = 1.06x 103 Js/ 108 s =

min

— 106x1026] = L06x107% oy =
1.6 x 10°1°

AE . =066 x107eV

min




CLASSICAL vs QUANTUM MECHANICS

Macroscopic matter - Matter 1s particulate, energy varies
continuously.The motion of a group of particles can be predicted
knowing their positions, their velocities and the forces acting between
them.

Microscopic particles - microscopic particles such as electrons exhibit
a wave-particle “duality”, showing both particle-like and wave-like
characteristics. The energy level 1s discrete. ...

The description of electrons in atoms requires a
completely new “quantum theory”.




What is Quantum Mechanics?

QM is the theory of the behavior of very small objects (e.g.

molecules, atoms, nuclel, elementary particles, quantum fields,
etc.)

One of the essential differences between classical and quantum
mechanics 1s that physical variables that can take on continuous
values in classical mechanics (e.g. energy, angular momentum)
can only take on discrete (or quantized) values in quantum

mechanics (e.g. the energy levels of electrons in atoms, or the
spins of elementary particles, etc).




1.3 The basic assumptions
(postulates) of quantum mechanics



Postulate 1.

The state of system is described by a wave
function of the coordinates and the time.



In CM (classical mechanics), the state of a system of N particles
1s specified totally by giving 3N spatial coordinates (X1, Y1, Z1)
and 3N velocity coordinates (Vxi, Vyi, Vzi).

In QM, the wave function takes the form wy(r, t) that depends on
the coordinates of the particle and the time.

For example: The wavefunction ¥ for a single particle of
1-D motion 1s:

v = Aexp[(i27/ h)(xp, — Et)] = ell27/MGp = EL)]

deduced from the wavefunction of plane monochromatic light:

[i27z(%—ut)]

v =Aexpli2z(x/A—vt)]= Ae




A wave function must satisfy 3 mathematical conditions:

1. Single-value
2. Continuous
3. Quadratically integrable.
To be generally normalized

o0 o0 0O

IIIW*(Fat)W(V,f)dxdde —1

—00—00—00

The probability

w* (r, 0w (r,t)dxdydz The probability that the particle
lies 1n the volume element

dxdydz, located at r, at time t.



Postulate 2.

For every observable mechanical quantity of a
microscopic system, there is a corresponding
linear Hermitian operator associated with it.

To find this operator, write down the classical-mechanical
expression for the observable in terms of Cartesian coordinates
and corresponding linear-momentum, and then replace each

coordinate X by the operator, and each momentum component

p, by the operator —iho/ox.




An operator 1s a rule that transforms a given function
into another function.  E.g. d/dx, sin, log

D = d/dx f(x)=x"=5
Df(x) = (x° =5)'=3x>

(A + B)f(x) = Af(x) + Bf(x)
(A — B)f(x) = Af(x) - Bf(x)
ABf(x) = A[Bf(x)]

Operators obey the associative law of multiplication:

A(BC) = (AB)C



Ay, +v,) =Ay, + Ay,
Acy = cAy

* A linear operator means

* A Hermitian operator means
[wiAydr = [y,(Ay) de [viAy,dr=[v,(Ay,) dz

* A Hermitian operator ensures that the
eigenvalue of the operator is a real number



Eigenfunctions and Eigenvalues

Suppose that the effect of operating on some function f(x)
with the operator A is simply to multiply f{x) by a certain
constant k. We then say that f{x) is an eigenfunction of A
with eigenvalue k.

Af(x) = kfx)

(d/dx)e> = 2e™

Eigen is a German word meaning characteristic.




Examples

X, P, Hermiton  operators

d .
PRC Not Hermiton  operators

L Ryde = |y xyndr = | 7y y,de =

e = %y () de = | 7 ysdyde

[=wibyndr=["w (- zh—)wzdr——mj v Lo e

Ox
0 0

—itlyyw, %~ “w, — v hdr]= ih| * v, — oW dr = | “w.b v dr



Every physical observable corresponds to a linear
Hermitian operator. To find this operator, write down the
classical-mechanical expression for the observable in
terms of Cartesian coordinates and corresponding linear-

momentum components, and then replace each

coordinate x by the operator X. and each momentum

component p, by the operator -ihd/0Ox.

f(x9x29°°°9p9p29°"):>ﬁIf(),(\f,),(\fz,”-,ﬁ,ﬁz,...




Some Mechanical quantities and their Operators

Mechanical quantities Mathematical Operator
Position X 2=
Momentum (x) p, D= 9 _ —ih 9
27 OX OX
Angular < il ( 8 8 )
_ - x - P
Momentum (z) M,=xp,-yp, “ 27 oy Y o
nw o° o 0 h*

Kinetic Energy T=p*2m f-._2

Potential Energy V V=V

2 2 2 )
Total Energy E=T+V H-=- h” 00, 0 0. %

+——+
(8X2 oy’ 0z’

2
87°m



When the two operators commute, their corresponded
mechanical quantities can be measured simultaneously.

F. G|=FG-GF =0




Postulate 3:

The wave-function of a system evolves in
time according to the time-dependent
Schradinger equation



Assumption 3: The wave-function of a system evolves
in time according to the time-dependent Schrodinger
equation - PN
HLP(X,y,Z,f) :1h6—
[

In general the Hamiltonian H 1s not a function of t, so we can
apply the method of separation of variables.

¥ (x,p,2,0) =p(x,y,2) f(t)
Hy(x,y,2)- flt) =ihy(x,y,2)
Hy(x.y.2) . 1 df(O)_
w(x,y,z)  fl) di

Hy(x,y,2) = Ey(X,y,2)
in IO _p i
f(t) dt w(x,y,z,t)=y(x,y,z)e

df (¢)
dt




‘Time-independent Schrodinger’s Equation

1 , p* . ih 0 0
A A A T:—mv = — p:-__:_lh_
H=T+V 2 Tom . 2max ox
2
IA/:_ 2 e.g. H atom
dre,r




Schrodinger’s Equation is an eigenvalue equation.

Ay =ay
In any measurement of the observable associated with the

operator A, the only values that will ever be observed are the
eigenvalues a, which satisfy the eigenvalue equation.

I. The eigenvalue of a Hermitian operator is a real number.

Proof:
IW*AWdT — ajw*wdf .

jc,y(A*w*)dr = a*IW*dT e=a

Quantum mechanical operators have to have real eigenvalues



I1. The eigenfunctions of Hermitian operators are orthogonal

_[Wi *Wjdz- = 51']'



I1. The eigenfunctions of Hermitian operators are orthogonal

Consider these two eigen equations

Ay, =ay, 0

Awm =a . (2)

Multiply the left of the 1st eqn by y_* and integrate, then
take the complex conjugate of eqn 2, multiply by y,_ and

integrate

Jvodp,de = a, [y,p,dr

v, Ay, de

a,, | wwde



Subtracting these two equations gives -

Il//m *flwndr _IWn‘/a*l//m *drt

= (a, -, [y, *v,dr

(a, -am*)jwm*t//ndr = 0

There are 2 cases, n =m, or n # m

If n = m, the integral = 1, by normalization, so a, = a_*



If n # m, and the system is nondegenerate (i.e. different
eigenfunctions have different eigenvalues, a_ # a_ ), then

(a, —am)jwm*wndr = 0

“‘Wi*Wde — é\z

The eigenfunctions of Hermitian operators are orthogonal

me*wndr =0



Example:

1
1 e_r/ao e—r/ZaO (2_L)

¢3(H) — ¢ S —
| \7a; 2 \32ma; 4

400 1 2w pm poo r
dr = e e 2% (D — —\r? sin Odrd 0d
| aondr=- NP NN 2= ¢

Az
4 _l _ +o n—-1 _—x
0 ’ _ T J‘Ooe 2a0r2(2_L)dr F(l’l) = ; X e dx
¢/ | 42703 %0 a,
: > / 1 —L L3
* 2ay 2 * 2ay
. = o [jo e r dr—jo e " —dr] 37
A . ) A aO ao —:y
X y 2a,
. 1 16 ¢ 16
- _¥sin =——|— e’ d - e’ 3d
;7 sine [[27f0 yay—<l eyl
N dr
1 16 1 16 16
- 21-—2311=0
. f > .T(3) r(4)] ﬁ[27 o |

I
1
% B 0
AN s
\;/smg:-a’ﬁ



Postulate 4 :

If vy, Ws,.. vy, are the possible states of
a microscopic system (a complete set),
then the linear combination of these
states is also a possible state of the
system.



Assumption 4 : If vy, v,,.. y, are the possible
states of a microscopic system (a complete set),
then the linear combination of these states is also
a possible state of the system.

Y=cqy toy,tay, +cy, = ch.l//l.

If a system 1s in a state described by a normalized wave
function y, then the average value of the observable
corresponding to A 1s given by —

j ¥ AVdr

— J':‘I’*flkl’dr j S



Exercise :

Suppose a particle in a box is in a state -

Y(x) =(¥)%x(a —X) 0<x<a
a

= () otherwise

Note that the wave function y(X) 1s not an eigenfunction for a
particle 1n a box. Sketch y(x) vs. x and show that y(X) 1s

normalized. Calculate the average energy associated with this
state. (Assume V = 0).

2 2
0 A ma



* The average value of a mechanical quantity with eigenstate.

Suppose the wave function happens to be an eigenfunction
of A,1.e. Ay, =a vy, so

=[ ¥, *4v,de

j: Y *a ¥ dr

a,| W, *¥,dr

= a

<a>=[¥" A¥dr= j(zc WJ)A(chl)dr
—Z(c) ajwlwldr Z(c) a,



If the wave function is an eigenfunction of A, with eigenvalue a,,
then the a measurement of the observable corresponding to A

will give the value a, with certainty.

<a> = foo Y *AY dr
= fw Y *a V¥ dr

= a,[ W, *¥,dr

= a,
<a2> = EO ¥ * A dr
2

=0

Thus the only value we measure is the value a,,.




Postulate 5 :

Pauli's principle. Every atomic or molecular
orbital can only contain a maximum of two
electrons with opposite spins.



The complete wavefunction for the description of electronic
motion should include a spin parameter in addition to its spatial
coordinates.

m¢ = Spin magnetic — electron spin L
m=£% (Ya=a) (+¥2=p) i v

Pauli exclusion principle:
Each electron must have a unique set of quantum numbers.

Two electrons in the same orbital must have opposite spins.

Electron spin is a purely quantum mechanical concept.



Energy level diagram for He. Electron configuration: 1s?

paramagnetic —
one (more) unpaired electrons

diamagnetic —
all paired electrons




The complete wavefunction for the description of electronic motion
should include a spin parameter in addition to its spatial coordinates.

O=¥Yn,lm) y(s,m,)
for two — electron atom(He)

¢(Q1,q ))

2 2
‘¢(%,Q2 )‘ = ‘¢(512,CI1)‘ } + symmetry (Bosons)
¢(q1,q2) - i¢(q2,q1) - Antisymmetry (Fermions)

Fermions
Particles that do obey the Pauli Exclusion Principle.

Bosons

Particles that do not obey the Pauli Exclusion Principle



1.4 Solution of free particle in a box

— a simple application of Quantum Mechanics



1.4.1 The free particle 1n a one

dimensional box

1. The Schrodinger’s Equation

and its solution

- h> d* -
H=-— -+ V
87°m dx
I, 111:
h Oy
_87z2m 0 x thy=Ety
O’w  8r’m
ax e V=Y
62l// h2

V(x)=o

V(x)=0c0
I1

V(x)=0 t

c(V=0) V-E=V

x=0 x=/



I1: V=0

Oy 8rm e'” = cosax +isin ax
0’ x h’ » ,
- e =cosax —isinox
set ﬂh;n =’
82W iox dqjl . iox dz‘Pl 2 iox
20y — Y =e =iqe =—-a’e
0 x raty =9 1 dx dx’
2
w=A¢e"+Be'™ ¥, =™ ¥, —iqe'™ d quz =—a’e'™
dx dx

w = Acosax + Bsinax

Boundary condition and continuous condition:
w(0)=0, w1)=0

Hence, y(0) =Acos0+Bsin0

A=0, B#0 wy=Bsinoax

v (/) =Bsinax =Bsin a/=0, Thus, a/=nm,



. N7
h® /* v =28 sme
212
n-h
E = > (n=12,3..)
8ml
Normalization of wave-function:
o, 2
‘l//‘ dx =1
Ol jsinz xdx=lx—lsin2x
032 sinzgm’le 2 4

» 1nz [ » 1lnm [

=B - — - =1
2 | (mzx)o 2 1l nrm

B




2. The properties of the solutions

a. The particle can exist in h’ 2 . m
n=1 £ = 2 Wy =47 SI—
many states 8ml [ ]
b. quantization ener 2 2 . 2mx
q gy n:2 E2 — 84h12 v, = —Sll’lT
c. The existence of zero-point "
energy. minimum energy _ Oh’ \F . 3mx
n_3 E === = [—SIN——+++---
(h2/8mp2) > 8ml? 73T

d. There is no trajectory but
only probability distribution

e. The presence of nodes



Energy levels in the well W“) o sin(nmx/a)

Energy

Probability density o« \l,zf{n)|“

node
node

T J//’“\\Ld/’f\\\hl
E,
E n=1
0

I| lriq. m
x=10 x=a * x

0 al a

In the ground state (n=1), the highest probability of the particle
occurs at the location 1/2.

h‘"-l

In the first excited state (n=2), the highest probability of the

particle occurs at the locations I/4 and 31/4, the lowest probability
at the location |/2.



Discussion:

1. Normalization and orthogonality

: 2¢ . nmx . max
_‘-O W (X)), (x)dx = 7 J-O sin 7 sin — dx=0

11. Average value

2¢ . nm . Nax [
<x>=7j smesm—dx:—

0

) 2¢ . NIX , . NIX [?
<X >:7josm—x Sin——dx = —

<p>=0 If the wave function is an
e eigenfunction of 4

< p’>=

4 (a)=[ ®*A¥dr = ¥*a¥dr

= afw\P*‘Pdf = a




cos(at f)=cosacos fFsinasin ff

sin(a £ ) =sina cos ftcosasin 5

a+f o-

cosa +cos f=2cos COS

COSa —Cos f =—2sIn SIn

sin¢ +sin ff = 2sIn COS

sin —sin f = 2¢os SIn



111. Uncertainty

[
Ax=A<x’>—<x>}=——
243
Ap:\/<pz>—<p>2 :ﬂ

21
[ nh nh

2321 43

when n=1 (ground state)

AxAp =

h
AxAp ~ —
7 27T



The general steps in the quantum mechanical
treatment:

a. Obtain the potential energy functions followed by
deriving the Hamiltonian operator and Schrédinger
equation.

b. Solve the Schrodinger equation. (obtain v, and E,)
c. Study the characteristics of the distributions of v,

d. Deduce the values of the various physical quantities
of each corresponding state.



3. Quantum leaks --- tunneling

2 2
—szmZ;/;JFVW:E'// (0<x<l)

and

2 2
_S:Zm ZZZ:EW (x<0,x>1)

The probability of penetration is
given by

2
Pr4EINI—(E/V)e ™ " R




Tunneling

: Classical Mechanics
%flb
/

=

Quantum Mechanics

Pes ARl PO W




Tunneling

Clazsical Pichure

clectron . —p

Cuantum Tunneling .

clecire hicld

Quantum Picture |

electron
wWave —P

« @

in classical physics, the clectron

is repelled by an eleciric field as
long az energy of eleciron is below:
energy level of the field

I quantum physics, the wave
funciion of the ¢lectron encounters

the cleciric ficld, but has some
tinite probability of minncling throngh

this is the basis for wansistors

A




Tunneling in the *“real world”

Tunneling is used:

- for the operation of many microelectronic devices
(tunneling diodes, flash memory, ...)

- for advanced analytical techniques (scanning tunneling
microscope, STM)

* Responsible for radioactivity (e.g. alpha particles)



STM System

%
K

L] p

A
ANShee
L]
Nt et \"Q

—%J 2m(D—E)z | __ ,
-, B g 24 b -
d Wﬂ'&&ﬁﬁ\u«

P~ Ke

Mode: Constant Current mode, Constant high mode

‘ -
ot



1.4.2 The free particle in a three
dimensional box



Particle in a 3-D box of dimensions a, b, c

Out of the box, V(x,y, z) =«
In the box, V(x, y, z) =0

hz O<x<a
V W = EW O<y<b
872'7’7’1 O<z<z

w00 0 (’92
87 m(ézx 82)/ 0’z

) =LEy

Let w=uw(X,y,2)=X(X)Y (y) Z(2) (separation of variables)
Substituting into 3-D Schroedinger equation



separation of variables
parat f bl
- h2 (82 .\ 82 . 82
87°m 0°x 0’y 0°z
2 2 2 2
— h2 (82 +a2 +82 YXYZ = EXYZ
dq7m 0°x 0Oy 0z
h*  YZ0*X XZoY XYo*Z
- ( 2 T 2 T 2
0°x o’y 0z

Ww=Ey

> )=EXYZ
87T m

W 0*X nw o0’Y 0°Z
~ o 2 S ( >t oo
87°m X0 x 8q7°m YOy Z0'z

)= E

LetE,=E-E,-E,

n o h* 0 o, .,
87°m 0% x * 87°m 0y g 872m 0%z °




The solution is:

2 . n._mx
X(x)=,|—smn—
a a
2 . n7ny
Y(y) =.]=sin—
(¥) ; ;
Z(z) = %sinn/ZZ
C C
n
W:XYZ:W/isinnxﬂxsin yﬂysin
abc a b




Multiply degenerate energy level when the box is cubic

n n
= +
8
3h°
The ground state: n,=n,=n,=1 E >
8ma

The first excited state: n;=n=1, n,=2

6h”
2

sma

1 1 2
1 2
2 1 1

The wave-functions are called E
degenerate (triply degenerate)




1.4.3 Simple applications of a
one-dimensional potential box
model



Example 1: The delocalization effect of 1,3-butadiene

Four & electrons form Four = electron forms a n,*
two n localized bonds delocalized bond

E=2X2 X h2/8mP=4E, |Ea E=2Xh2/8m(3/ )2+
2% 22 X h2/8m(3/)2 =(10/9)E,

S
E4/9 1L
Bl ¥




Example 2: The adsorption spectrum of cyanines

The general formula of the cyanine dye:

R,N-(CH=CH-), CH=NR,

Total 7t electrons: 2m-+4

In the ground state, these electrons occupy
m+2 molecular orbitals

The adsorption spectra correspond to electron
excitations from the highest occupied (m+2)
orbital to the lowest unoccupied (m+3) orbital.

AE = hzz[(m+3)2—(m+2)2]= (2m+)5)
m [ m

e




Sm [*c 3.30/°
__8mic _ | = 248m + 565
Hames) ames P m+565(pm)

Table 1. The absorption spectrum of the cyanine dye

R,N-(CH=CH-) CH=NR,

Amax (calc)/nm Amax (expt) /nm

311.6 309.0
412.8 409.0
514.6 511.0




