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Structural Chemistry

主要研究从原子、分子片、分子、超分子，到分子和原子的各种
不同尺度和不同复杂程度的聚集态和组装态的合成和反应，分离
和分析，结构和形态，物理性能和生物活性及其规律和应用的自
然科学 –-- 徐光宪

1998年诺贝尔化学奖获得者Kohn和Pople认为：

“量子化学已经发展成为广大化学家所使用的工具，将化学带入
一个新时代，在这个新时代里实验和理论能够共同协力探讨分子
体系的性质。化学不再是纯粹的实验科学了”

结构化学是研究原子、分子和晶体的微观结构，研究原子和分
子运动规律，研究物质的结和性能关系的科学



2013年诺贝尔化学奖获奖理由：复杂体系多尺度模型

Nobel  Prize in Chemistry 1981
Fukui & Hoffmann



Know-How about Structural Chemistry

 3+2+1原则

3种理论：量子理论，化学键理论，点阵理论

3种结构：原子结构，分子结构，晶体结构

3个基础：量子化学基础，对称性原理基础，结晶化学基础

2个因素：电子因素，空间因素

1条主线：结构决定性能，性能反映结构

 理解为主，记忆为辅（预习--- 复习--- 总结)

 发展的观点

分子→超分子，微观→介观（纳米）→宏观，相对论？
光速不变？…



What is Chemistry

The branch of natural science that 
deals with composition, structure, 
properties of substances and the 
changes they undergo.

Chemistry = Chem + is + try ?



The structure determines properties
Properties reflect the structure

Structure vs. Properties



Types of substances

Atoms
Molecules

Clusters
Congeries

Nano materials

Bulk materials

Geometric Structure

Size
makes the difference

Electronic Structure



Atom

The basic building block of all 
matter. The smallest particle of 
an element that has the same 
properties as the element. 

Composed of an electron cloud 
and a central nucleus.

Basic Units



All the matter around you is made of 
atoms, and all atoms are made of only 
three types of subatomic particle, 
protons, electrons, and neutrons.

All protons are exactly the same, all 
neutrons are exactly the same, and all 
electrons are exactly the same.

Atomic Structure

There are many elements in the PERIODIC TABLE. Over 100! 
The thing that makes those elements different is the number of 
electrons, protons, and neutrons.



History of 
Atomic Models

Understanding 
atomic structure is a 
first step to 
understand structure 
of the matter



Molecule

The simplest structural unit of a 
substance that retains the 
properties of the substance.

Composed of one or more 
atoms. 

Basic Units



Inorganic
molecules

Organic
molecules

Bio-molecules

O2; H2O, Si, Pt, TiO2, etc.

CH4; C2H4, C6H6, CH3OH, etc.

DNA, RNA, Protein, 
Enzyme, etc.

Understanding Molecular Structure



Structural Chemistry

Inorganic Chemistry
Organic Chemistry
Catalysis
Electrochemistry
Bio-chemistry
etc.

Material Science
Surface Science
Life Science
Energy Science
Environmental Science
etc. 



Role of Structural Chemistry 
in Surface Science



fcc(100) fcc(111)

fcc(775) fcc(10 8 7)

Surface structures of Pt single crystal
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Different surfaces do different chemistry
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Platinum NCs of very unusual tetrahexahedral (THH) shape were 
prepared at high yield by an electrochemical treatment of Pt 

nanospheres



Invited Review & Feature Articles
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These high-energy surfaces are surprisingly thermal (to 800 ºC) and chemical stable and 
exhibit much enhanced (up to 400%) catalytic activity for equivalent Pt surface areas 
for electro-oxidation of small organic fuels such as formic acid and ethanol. 



Model and practical catalysts
The single crystal planes vs nanparticles’ surface structure

Unit stereographic triangle of 
fcc single-crystal and models 
of surface atomic arrangement

Unit stereographic triangle of 
polyhedral nanocrystals bounded 
by different crystal planes

Zhou, Tian, Sun, Faraday Discuss., 2008,140:81–92
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Surface Structure vs. Catalytic Activity

N2 + 3H2  2NH3

Fe single 
crystal，
20atm/700K
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Small Molecules Control Surface Structures

20 nm20 nm

J. Am. Chem. Soc. 2008, 130, 17563
J. Am. Chem. Soc. 2009, 131, 3152
J. Am. Chem. Soc. 2009, 131, 4602
J. Am. Chem. Soc. 2009, 131, 13916

Angew. Chem. Int. Ed. 2008, 47, 8901
Angew. Chem. Int. Ed. 2009, 48, 4808
Angew. Chem. Int. Ed. 2009, 48, 9344



Role of Structural Chemistry 
in Materials Science



 Graphite & Diamond Structures
Diamond: Insulator or wide bandgap 

semiconductor: 
Graphite: Planar structure: 
sp2 bonding  2d metal (in plane)

 Other Carbon Crystal Structures
“Buckyballs” (C60)      
“Buckytubes” (nanotubes), 
other fullerenes   

C Crystal Structures

Structure makes the difference





Zheng LS (郑兰荪), et al.
Capturing the labile fullerene[50] as C50Cl10
SCIENCE 304 (5671): 699-699 APR 30 2004 
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壳层隔绝纳米粒子增强拉曼光谱（SHINERS）

可以适用于任何的基底
材料和任何形状的电极
（单晶）表面和体系，
极大拓宽了拉曼光谱的
通用性

Au core

Silica 
Shell

Nature, 2010, 464, 392–395   

SiO2



Role of Structural Chemistry 
in Life Science



What do proteins do ?
Proteins are the basis of how biology gets things 

done.

• As enzymes, they are the driving force behind 
all of the biochemical reactions which makes 
biology work. 

• As structural elements, they are the main 
constituents of our bones, muscles, hair, skin 
and blood vessels.

• As antibodies, they recognize invading 
elements and allow the immune system to get 
rid of the unwanted invaders.



What are proteins made of ?
• Proteins are necklaces of amino acids, i.e. long chain 

molecules.



Form determines function
• Suppose you have some molten iron. 

You may turn it into nails, hammers, 
wrenches, etc. What makes these 
tools different from each other is their 
form (i.e. their shape and structure)

• Similarly proteins, though basically 
being built as similar chains of amino 
acids, very rapidly fold onto their 
own “correct” form, so as to be able 
to carry out the function that is 
assigned to them



How do prions (朊蛋白) fold ?

The “kiss of death”
A person ingests an abnormally-shaped prion from 
contaminated food or other contaminated sources.

The abnormally-shaped prion gets absorbed into the 
bloodstream and crosses into the nervous system.

The abnormal prion touches a normal prion and 
changes the normal prion's shape into an abnormal one, 

thereby destroying the normal prion's original function.

Both abnormal prions then contact and change the 
shapes of other normal prions in the nerve cell. 

The nerve cell tries to get rid of the abnormal prions by 
clumping them together in small sacs. Because the 
nerve cells cannot digest the abnormal prions, they 

accumulate in the sacs 
that grow and engorge the nerve cell, which eventually 

dies. 

When the cell dies, the abnormal prions are released to 
infect other cells. 

Large, sponge-like holes are left where many cells die. 

Evidence indicates that the infectious agent in 
transmissible spongiform encephalopathy is a 
protein. Stanley Prusiner pioneered the study of 
these proteins and received the Nobel Prize in 
medicine (1997). He has named them prion 
proteins (referred to as PrP) or simply prions. 

Proteins have primary structures, which is their 
sequence of amino acids, and secondary 
structures, which is the three dimensional shape 
that one or more stretches of amino acids  take. 
The most common shapes are the alpha helix and 
the beta conformation. 

The normal protein is called PrPC (for cellular). Its 
secondary structure is dominated by alpha helices. 
The abnormal, disease producing protein called 
PrPSc (for scrapie), has the same primary 
structure as the normal protein, but its secondary 
structure is dominated by beta conformations.

Examples of alpha helices
and beta sheets



Structural Chemistry

•  It is a subject to study the microscopic 
structures of matters at the 
atomic/molecular level using Chemical 
Bond Theory. 

•  Chemical bondsstructuresproperties. 



Objective of Structural Chemistry

1) Determining the structure of 
known substance

2) Understanding the structure-
property relationship

3) Predicting the substance with 
specific structure and property



Chapter 1    Basics of quantum mechanics    4
Chapter 2     Atomic structure                        4
Chapter 3     Symmetry                                   3
Chapter 4     Diatomic molecules                    3
Chapter 5/6 Polyatomic structures     (4+2)  5
Chapter 7     Basics of Crystallography         4
Chapter 8     Metals and Alloys                       1
Chapter 9     Ionic compounds                        3

Outline & Schedule



Chapter 1

The basic knowledge of quantum 
mechanics



1.1 The failures of classical physics

• Classical physics: (prior to 1900)

Newtonian classical mechanics
Maxell’s theory of electromagnetic waves
Thermodynamics and statistical physics



1.1.1  Black-body radiation



It can not be explained by classical thermodynamics 
and statistical mechanics.

Black-Body Radiation

Classical solution:

Rayleigh-Jeans Law

(long wave length, high T)

Wien   Approximation

(high energy, Low T)

A large number of experiments 
revealed the temperature-
dependence of max and 
independence on the substance 
made of the black-body device. 



Max Karl Ernst Ludwig Planck (April 23, 1858 – October 4, 1947) was a German
physicist who is regarded as the founder of the quantum theory, for which he
received the Nobel Prize in Physics in 1918 )



(high energy, low T)

(long wavelength, high T)



1.1.2 The photoelectric effect





The photoelectric effect



The Photoelectric Effect

1. The kinetic energy of the ejected electrons depends
linearly on the frequency of the light.
2. There is a particular threshold frequency for each metal.
3. The increase of the intensity of the light results in the
increase of the number of photoelectrons.



Classical physics: The energy of light wave should be directly 
proportional to intensity and not be affected by frequency.



Explaining the Photoelectric Effect

• Albert Einstein (1879-1955, 1921 Nobel Prize in Physics)
– Proposed a corpuscular theory of light (photons). 
– won the Nobel prize in 1921

1. Light consists of a stream of photons. The energy of a 
photon is proportional to its frequency. 

 = h h = Planck’s constant

2. A photon has energy as well as mass. m= h c2

3. A photon has a definite momentum. p=mc= h c=h/

4. The intensity of light depends on the photon density



Therefore, the photon’s energy is equal to the 
electron’s kinetic energy added to the electron’s 
binding energy

• Ephoton = E binding + E Kinetic energy

• h = W + Ek

Explaining the Photoelectric 
Effect



Example I: Calculation of Energy from Frequency

Problem:  What is the energy of a photon of electromagnetic radiation 
emitted by an FM radio station at 97.3 x 108 cycles/sec?
What is the energy of a gamma ray emitted by Cs137 if it has a frequency
of 1.60 x 1020/s?

Ephoton =h = (6.626 x 10 -34Js)(9.73 x 109/s) = 6.447098 x 10 -24J

Ephoton = 6.45 x 10 - 24 J

Egamma ray =h = ( 6.626 x 10-34Js )( 1.60 x 1020/s ) = 1.06 x 10 -13J

Egamma ray = 1.06 x 10 - 13J

Solution:

Plan: Use the relationship between energy and frequency to obtain 
the energy of the electromagnetic radiation (E = h).



Example II: Calculation of Energy from Wavelength

Problem: What is the photon energy of of electromagnetic radiation
that is used in microwave ovens for cooking, if the wavelength of the
radiation is 122 mm ?

wavelength = 122 mm = 1.22 x 10 -1m

Energy = E = h = (6.626 x 10 -34Js)(2.46 x 1010/s) = 1.63 x 10 - 23 J

Plan: Convert the wavelength into meters, then the frequency can be
calculated using the relationship;wavelength x frequency = c (where 
c is the speed of light), then using E=h to calculate the energy.
Solution:

s
m

sm
wavelength

cfrequency /1046.2
1022.1

/1000.3 10
1

8





 



Example III: Photoelectric Effect

• The energy to remove an electron from potassium 
metal is 3.7 x 10 -19J. Will photons of frequencies of 
4.3 x 1014/s (red light) and 7.5 x 1014 /s (blue light) 
trigger the photoelectric effect?

• E red = h = (6.626 x10 - 34Js)(4.3 x1014 /s)
E red = 2.8 x 10 - 19 J

• E blue = h = (6.626 x10 - 34Js)(7.5x1014 /s)
E blue = 5.0 x 10 - 19 J



• The binding energy of potassium is   =   3.7 x 10 - 19 J    
• The red light will not have enough energy to knock an 

electron out of the potassium, but the blue light will eject 
an electron !

• E Total = E Binding Energy + EKinetic Energy of Electron

• E Electron = ETotal - E Binding Energy

• E Electron = 5.0 x 10 - 19J   - 3.7 x 10 - 19 J
= 1.3 x 10 - 19Joules



1.1.3 Atomic and molecular 
spectra



The Line Spectra of Several Elements







The Energy States of Hydrogen Atom

Bohr derived the energy for a system consisting of a nucleus 
plus a single electron

eg.

He predicted a set of quantized energy levels given by :

- R is called the Rydberg constant (2.18 x 10-18 J)
- n is a quantum number; - Z is the nuclear charge

n  1,2,3...En  
RZ2

n2

H He  Li2 

R = 13.6 eV

)11( 2
2

2
1

2
21 nn

RZEEE nn 


 chhE  || Photon energy in absorption and 

emission along electron transition.



Problem: Find the energy change when an electron changes from the
n=4 level to the n=2 level in the hydrogen atom? What is the wavelength
of this photon?

Plan: Use the Rydberg equation to calculate the energy change, then 
calculate the wavelength using the relationship of the speed of light.
Solution:

 = =h  c
 E

(6.626  10 -34Js)( 3.00  108 m/s)

4.09  10 -19J

= 4.87  10 -7 m = 487 nm

JJ

nn
JE

19
2
2

2
1

18

2
2

2
1

18

1009.4)
2
1

4
1(1018.2

)11(1018.2











1.1.4 The diffraction of 
electrons



Different Behaviors of Waves and Particles



Si Crystal

Electron beam (50eV)

The diffraction of electrons

STM image of Si(111) 7x7 surface

235 pm (2.35Å)



1.2 The characteristic of the 
motion of microscopic particles



1.2.1 The wave-particle duality 
of microscopic particles

In 1924 de Beoglie suggested that microscopic 
particles might have wave properties.

Spatial image of the 
confined electron states 
of a quantum corral. The 
corral was built by 
arranging 48 Fe atoms 
on the Cu(111) surface 
by means of the STM tip. 
Rep. Prog. Phys. 
59(1996) 1737

Electron as waves



De Broglie assumed that the wave-particle 
relationship in light is also applicable to particles of 
matter, i.e. 

E=h

p=h/

The wavelength of a particle could be determined by

= h/p = h/mv
h = Planck’s constant, 
p = particle momentum, 
= de Broglie wavelength


 hh

c
E

c
mcmcp 

2



J = kg m2

s2 hence

de Broglie Wavelength
Example: Calculate the de Broglie wavelength of an 
electron with speed 3.00  106 m/s.

electron mass = 9.11  10 -31 kg

velocity = 3.00  106 m/s

 =             =                                                              
h
mv

6.626  10 - 34Js
( 9.11  10 - 31kg )( 1.00  106 m/s )

Wavelength      = 2.42  10 -10 m = 0.242 nm



The moving speed of an electron is determined by the 
potential difference of the electric field (V)

eVm 2v
2
1

If the unit of V is volt, then the wavelength is:

)(10226.1

1
10602.110110.92

10626.6
V2

v/

9
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me
hmh


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

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



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2v22
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Slow electron        9  10 - 28 1.0                  7  10 - 4

Fast electron         9  10 - 28 5.9  106 1  10 -10

Alpha particle      6.6  10 - 24 1.5  107 7  10 -15

One-gram mass     1.0                           0.01                      7  10 - 29

Baseball                142                          25.0                           2  10 - 34

Earth                     6.0  1027 3.0  104 4  10 - 63

The de Broglie Wavelengths 
of Several particles

Particles           Mass (g)         Speed (m/s)          (m)



 Wave (i.e., light)

- can be wave-like (diffraction)

- can be particle-like  (p=h/)

• Particles

- can be wave-like ( =h/p)

- can be particle-like  (classical)

The wave-particle duality



For photon: 

p=mc,   

E=h=h (c/) = pc = mc2   p2/2m

Discussion:

For particles: 

p=mv,   

E=(1/2) mv2 = p2/2m=pv/2   pv

E=h 

p = h/



1.2.2 The uncertainty principle
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Measurement

•Classical: the error in the measurement
depends on the precision of the apparatus,
could be arbitrarily small.

•Quantum: it is physically impossible to
measure simultaneously the exact position and
the exact velocity of a particle.



Example
The speed of an electron is measured to be 1000 m/s to
an accuracy of 0.001%. Find the uncertainty in the
position of this electron.

The momentum is

p = mv = (9.11 x 10-31 kg) (1 x 103 m/s)

= 9.11 x 10-28 kg.m/s

p = p x 0.001% = 9.11 x 10-33 kg m/s

x = h / p = 6.626 x 10-34 / (9.11 x 10-33 )

= 7.27 x 10-2 (m)



Example
The speed of a bullet of mass of 0.01 kg is measured to
be 1000 m/s to an accuracy of 0.001%. Find the
uncertainty in the position of this bullet.

The momentum is

p = mv = (0.01 kg) (1 x 103 m/s) = 10 kg.m/s

p = p x 0.001% = 1 x 10-4 kg m/s

x = h / p = 6.626 x 10-34 / (1 x 10-4 )

= 6.626 x 10-30 (m)





CLASSICAL vs QUANTUM MECHANICS

Macroscopic matter - Matter is particulate, energy varies 
continuously.The motion of a group of particles can be predicted 
knowing their positions, their velocities and the forces acting between 
them.

Microscopic particles - microscopic particles such as electrons exhibit
a wave-particle “duality”, showing both particle-like and wave-like 
characteristics. The energy level is discrete. …

The description of electrons in atoms requires a 
completely new “quantum theory”.



What is Quantum Mechanics?

QM is the theory of the behavior of very small objects (e.g. 
molecules, atoms, nuclei, elementary particles, quantum fields, 
etc.)

One of the essential differences between classical and quantum 
mechanics is that physical variables that can take on continuous 
values in classical mechanics (e.g. energy, angular momentum)  
can only take on discrete (or quantized) values in quantum 
mechanics (e.g. the energy levels of electrons in atoms, or the 
spins of elementary particles, etc).



1.3 The basic assumptions 
(postulates) of quantum mechanics



Postulate 1.

The state of system is described by a wave 
function of the coordinates and the time.



In CM (classical mechanics), the state of a system of N particles
is specified totally by giving 3N spatial coordinates (Xi, Yi, Zi)
and 3N velocity coordinates (Vxi, Vyi, Vzi).

In QM, the wave function takes the form (r, t) that depends on
the coordinates of the particle and the time. 

For example: The wavefunction  for a  single particle of 
1-D motion is:

)])(/2[()])(/2exp[( Etxphi
x

xAeEtxphiA  

deduced from the wavefunction of plane monochromatic light:

)](2[
)]/(2exp[

txi
AevtxiA












A wave function must satisfy 3 mathematical conditions:

1. Single-value
2. Continuous
3. Quadratically integrable.

To be generally normalized

1   ),(),(*   












dxdydztrtr 

dxdydztrtr ),(),(*  The probability that the particle
lies in the volume element
dxdydz, located at r, at time t.

The probability



Postulate 2.

For every observable mechanical quantity of a 
microscopic system, there is a corresponding 
linear Hermitian operator associated with it.

To find this operator, write down the classical-mechanical
expression for the observable in terms of Cartesian coordinates
and corresponding linear-momentum, and then replace each
coordinate x by the operator, and each momentum component
px by the operator –iћ/x.



An operator is a rule that transforms a given function 
into another function.      E.g. d/dx, sin, log

f(x)B̂f(x)Â)f(x)B̂Â( 

f(x)B̂f(x)Â)f(x)B̂Â( 

f(x)]B̂[Âf(x)B̂Â 

Ĉ)B̂Â()ĈB̂(Â 

Operators obey the associative law of multiplication:

d/dxD̂  5)( 3  xxf
23 3)'5()(ˆ xxxfD 



• A linear operator means 2121 ψÂψÂ)ψ(ψÂ 

• A Hermitian operator means

 dd *
111

*
1 )ψÂ(ψψÂψ    dd *

122
*
1 )ψÂ(ψψÂψ  

*  A  Hermitian operator ensures that the 
eigenvalue of the operator is a real number

ψÂcψÂ c



Eigenfunctions and Eigenvalues

Suppose that the effect of operating on some function f(x)
with the operator Â is simply to multiply f(x) by a certain
constant k. We then say that f(x) is an eigenfunction of Â
with eigenvalue k.

kf(x)f(x) Â

2x2x 2e(d/dx)e 

Eigen is a German word meaning characteristic.
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Every physical observable corresponds to a linear
Hermitian operator. To find this operator, write down the
classical-mechanical expression for the observable in
terms of Cartesian coordinates and corresponding linear-
momentum components, and then replace each
coordinate x by the operator x. and each momentum

component px by the operator -iћ/x.

),ˆ,ˆ,,ˆ,ˆ(ˆ),,,,,( 2222  ppxxfFppxxf 



Position                x

Momentum (x)     px

Angular 
Momentum (z)    Mz=xpy-ypx

Kinetic Energy    T=p2/2m

Potential Energy  V

Total Energy        E =T+V

Some Mechanical quantities and their Operators

Mechanical quantities           Mathematical Operator
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• When the two operators  commute, their corresponded 
mechanical quantities can be measured simultaneously. 

ˆ ˆ, 0F G FG GF     
  



Postulate 3:

The wave-function of a system evolves in 
time according to the time-dependent 
Schrödinger equation



Assumption 3: The wave-function of a system evolves 
in time according to the time-dependent Schrödinger 
equation -

t
tzyxH




 i  ),,,(ˆ

In general the Hamiltonian H is not a function of t, so we can
apply the method of separation of variables. 

f(t) z)y,(x, ),,,(  tzyx


t

zyxtzyx
-iE

e ),,(  ),,,(  

E
dt

tdf
f(t)

H


)(1i 
z)y,(x,
z)y,(x,ˆ





dt
tdff(t)H )(z)y,(x,i z)y,(x,ˆ  

z)y,(x,z)y,(x,ˆ  EH 

E
dt

tdf
f(t)


)(1i



Time-independent  Schrödinger’s Equation
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The Schrödinger’s Equation is an eigenvalue equation.

aψψ Â

I. The eigenvalue of a Hermitian operator is a real number.

****Â ψaψ 
* *Âψ ψd a ψ ψd  
* * * *ˆ(A )ψ ψ d a ψψ d  

*aa 

Proof:

Quantum mechanical operators have to have real eigenvalues

In any measurement of the observable associated with the 
operator A, the only values that will ever be observed are the 
eigenvalues a, which satisfy the eigenvalue equation.



*   i j ijd   

II. The eigenfunctions of Hermitian operators are orthogonal



II. The eigenfunctions of Hermitian operators are orthogonal

Consider these two eigen equations

mmm ψaψ Â

nnn ψaψ Â

Multiply the left of the 1st eqn by m* and integrate, then 
take the complex conjugate of eqn 2, multiply by n and 
integrate

* *
n

ˆ  a  m n m nA d d      
* * * *

m
ˆ  a  n m n mA d d      

(2)

(1)



There are 2 cases, n = m, or n  m

n m

ˆ ˆ*  * *

 (a  - a *) *

m n n m

m n

A d A d

d

     

  





 


n m(a  - a *) *   0m nd   

Subtracting these two equations gives -

If n = m, the integral = 1, by normalization, so an = an*



If n  m,  and the system is nondegenerate (i.e. different 
eigenfunctions have different eigenvalues, an  am ), then 

n m(a  - a ) *   0m nd   

*   0m nd   
The eigenfunctions of Hermitian operators are orthogonal

*   i j ijd   



Example: 
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Postulate 4 :

If 1, 2,… n are the possible states of 
a microscopic system (a complete set), 
then the linear combination of these 
states is also a possible state of the 
system.



If a system is in a state described by a normalized wave 
function , then the average value of the observable 
corresponding to A is given by –

Assumption 4 : If 1, 2,… n are the possible 
states of a microscopic system (a complete set), 
then the linear combination of these states is also 
a possible state of the system.
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Exercise :

Suppose a particle in a box is in a state -

Note that the wave function (x) is not an eigenfunction for a 
particle in a box. Sketch (x) vs. x and show that (x) is
normalized. Calculate the average energy associated with this
state. (Assume V = 0).    
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* The average value of a mechanical quantity with eigenstate.

Suppose the wave function happens to be an eigenfunction
of A, i.e. An = ann    so
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Thus the only value we measure is the value an.

If the wave function is an eigenfunction of A, with eigenvalue an,

then the a measurement of the observable corresponding to A

will give the value an with certainty.



Postulate 5 :

Pauli’s principle. Every atomic or molecular 
orbital can only contain a maximum of two 
electrons with opposite spins.



ms = spin magnetic  electron spin

ms = ±½    (-½ = )  (+½ = )

Pauli exclusion principle:

Each electron must have a unique set of quantum numbers.

Two electrons in the same orbital must have opposite spins.

Electron spin is a purely quantum mechanical concept.

The complete wavefunction for the description of electronic 
motion should include a spin parameter in addition to its spatial 
coordinates.
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Energy level diagram for He.  Electron configuration: 1s2
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+   symmetry (Bosons)

- Antisymmetry (Fermions)

The complete wavefunction for the description of electronic motion 
should include a spin parameter in addition to its spatial coordinates.

Fermions

•Particles that do obey the Pauli Exclusion Principle.

Bosons

•Particles that do not obey the Pauli Exclusion Principle



1.4   Solution of free particle in a box

–– a simple application of Quantum Mechanics



1.4.1 The free particle in a one
dimensional box

V(x)= V(x)=

V(x)= 0

x=0 x=l

I

II
III

1. The Schrödinger’s Equation 
and its solution 
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II: V=0
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2. The properties of the solutions

a. The particle can exist in 
many states

b. quantization energy

c. The existence of zero-point 
energy. minimum energy 
(h2/8ml2)

d.  There is no trajectory but 
only probability distribution

e. The presence of nodes
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• In the ground state (n=1), the highest probability of the particle 
occurs at the location l/2. 

•   In the first excited state (n=2), the highest probability of the 
particle occurs at the locations l/4 and 3l/4, the lowest probability 
at the location l/2. 



Discussion:

i. Normalization and orthogonality
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eigenfunction of Â
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iii. Uncertainty
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The general steps in the quantum mechanical 
treatment:

a. Obtain the potential energy functions followed by 
deriving the Hamiltonian operator and Schrödinger 
equation.

b. Solve the Schrödinger equation. (obtain n and En)

c. Study the characteristics of the distributions of n.

d. Deduce the values of the various physical quantities 
of each corresponding state.



3. Quantum leaks --- tunneling
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Tunneling

Classical Mechanics

Quantum Mechanics





Tunneling in the “real world”

• Tunneling is used:

- for the operation of many microelectronic devices 
(tunneling diodes, flash memory, …)

- for advanced analytical techniques (scanning tunneling 
microscope, STM)

• Responsible for radioactivity (e.g. alpha particles)
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STM System

Mode: Constant Current mode, Constant high mode
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1.4.2 The free particle in a three 
dimensional box



Let  = (x, y, z)= X (x) Y (y) Z (z) (separation of variables)
Substituting into 3-D Schroedinger equation
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Let Ez = E - Ex - Ey



c
zn

b
yn

a
xn

abc
XYZ zyx  sinsinsin8



)(
8 2

2

2

2

2

22

c
n

b
n

a
n

m
hEEEE zyx

zyx 

b
yn

b
yY ysin2)( 

a
xn

a
xX xsin2)( 

c
zn

c
zZ zsin2)( 

The solution is:



Multiply degenerate energy level when the box is cubic

(a = b = c)
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degenerate (triply degenerate)
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1.4.3 Simple applications of a 
one-dimensional potential box 

model



Example 1: The delocalization effect of 1,3-butadiene

Four  electrons form 
two  localized bonds

Four  electron forms a 4
4

delocalized bond

＞

l          l         l

E1

C CC C

E4/9

E1/9

C CC C

E=2×2 ×h2/8ml2=4E1 E=2×h2/8m(3l )2+
2×22 × h2/8m(3l )2 =(10/9)E1  



Example 2: The adsorption spectrum of cyanines

R2N-(CH=CH-)mCH=NR2
+..

Total  electrons: 2m+4

In the ground state, these electrons occupy
m+2 molecular orbitals

The adsorption spectra correspond to electron
excitations from the highest occupied (m+2)
orbital to the lowest unoccupied (m+3) orbital.
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The general formula of the cyanine dye:
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Table 1. The absorption spectrum of the cyanine dye
R2N-(CH=CH-)nCH=NR2

+..

n          max  (calc) / nm    max (expt) /nm

1                311.6                        309.0

2                412.8                        409.0

3                514.6                        511.0
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