Chapter 3

Molecular symmetry and symmetry point group

Why do we study the symmetry concept?

 The molecular configuration can be expressed more simply and distinctly.

The determination of molecular configuration is greatly simplified.

It assists giving a better understanding of the properties of molecules.

To direct chemical syntheses; the compatibility in symmetry is a factor to be considered in the formation and reconstruction of chemical bonds.

§**1 Symmetry elements and symmetry operations**

Symmetry exists all around us and many people see it as being a thing of beauty.

 \triangleright A symmetrical object contains within itself some parts which are **equivalent** to one another.

The systematic discussion of symmetry is called : Some objects are more symmetrical than others.

- symmetry operation **1. Symmetry elements and symmetry operations**
	- •**A action that leaves an object the same after it has been carried out is called symmetry operation.**

(a) An NH₃ molecule has a threefold (C₃) axis

(b) an H₂O molecule has a twofold (C_2) axis.

symmetry elements

•Symmetry operations are carried out with respect to points, lines, or planes called symmetry elements.

(a) An $NH₃$ molecule has a threefold (C_3) axis

(b) an $H₂O$ molecule has a twofold (C_2) axis.

 $NH₃$ has higher rotation symmetry than $H₂O$

Symmetry elements

Some of the symmetry elements of a cube, the twofold, threefold, and fourfold axes.

Symmetry Operation

Symmetry operations are:

The corresponding symmetry elements are:

a line

1) The identity (E)

- \bullet **Operation by the identity operator leaves the molecule unchanged.**
- **All objects can be operated upon by the identity operation.**

2) Inversion and the inversion center (*i)*

•An object has a center of inversion, \boldsymbol{i} **, if it can be reflected through a center to produce an indistinguishable configuration.**

A regular octahedron has a centre of inversion (i).

For example

These have a center of inversioni .

These do not have a center of inversion.

Inverts all atoms through the centre of the object

\triangleright Its matrix representation

$$
\begin{pmatrix} -1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & -1 \end{pmatrix} \qquad i \begin{pmatrix} x \ y \ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \ y \ z \end{pmatrix} = \begin{pmatrix} -x \ -y \ -z \end{pmatrix}
$$

3) Rotation and the n-fold rotation axis (C n)

Rotation about an n-fold axis (rotation through 360%) is denoted by the symbol $\mathbf{C_{n}}$.

• Example: Rotation of trigonal planer BF_3 .

Links of the Company One three-fold (C_3) rotation axes. $(\alpha=2\pi/3)$

The principle rotation axis is the axis of the highest fold.

The matrix representations:

 $\boldsymbol{\alpha}$

x

The matrix representations:

Conditions:

 \blacktriangleright The centre of mass of the molecule is located at the origin of the Cartesian Coordinate System

 \blacktriangleright Principle axis is aligned with the z-axis

For example

The principle rotation axis is the axis of the highest fold.

н

4) Reflection and the Mirror plane (σ)

 If reflection of an object through a plane produces an indistinguishable configuration then that plane is a plane of symmetry (mirror plane) denoted σ .

There are three types of mirror planes:

- **If the plane is perpendicular** to the vertical principle axis then it labeled σ_h .
- **If the plane contains** the principle axis then it is labeled σ_{v} .
- If a σ plane **contains** the principle axis and **bisects** the angle between two adjacent 2-fold axes then it is labeled σ_d .

If the plane is **perpendicular** to the vertical principle axis then it labeled σ_{h} .

• Example: BF_3 also has a σ_h plane of symmetry.

If the plane **contains** the principle axis then it is labeled σ_{v} .

- Example: Water
	- Has a C_2 principle axis.
	- Has two planes that contain the principle axis, σ_{v} and σ_{v}' .

If a σ plane **contains** the principle axis and **bisects** the angle between two adjacent 2-fold axes then it is labeled σ_d .(*Dihedral* mirror planes)

- Example: BF_3
	- Has a C_3 principle axis
	- Has three- C_2 axes.
	- Has three σ_d planes (?).

Example: C_6H_6

Benzene has one mirror plane perpendicular to the principle C_6 axis (σ_h)

Dihedral mirror planes (σ_d) bisect the C_2 axis perpendicular to the principle axis.

Example: H₂C=C=CH₂

a. n -fold rotation + reflection, Rotary-reflection axis (S_n) **5) The improper rotation axis**

Rotate 360°/n followed by reflection in mirror plane perpendicular to axis of rotation

The staggered form of ethane has an S 6 axis composed of a 60 rotation followed by a reflection.

Special Cases: S₁ and S₂

$$
S_1 = \sigma_h C_1 = \sigma_h \qquad S_2 = \sigma_h C_2 = i
$$

Stereographic Projections

We will use stereographic projections to plot the perpendicular to a general face and its symmetry equivalents, to display crystal morphology

o for upper hemisphere; x for lower

$$
S_4 = \sigma_h C_4
$$

\n
$$
S_4^1 = \sigma C_4^1; S_4^2 = C_2^1; S_4^3 = \sigma C_4^3; S_4^4 = E
$$

\n
$$
S_4^3
$$

\n
$$
S_4^3
$$

\n
$$
S_4^1
$$

\n
$$
S_4^2
$$

$$
S_5^1 = \sigma C_5^1
$$
; $S_5^2 = C_5^2$; $S_5^3 = \sigma C_5^3$; $S_5^4 = C_5^4$; $S_5^5 = \sigma$;
 $S_5^6 = C_5^1$; $S_5^7 = \sigma C_5^2$; $S_5^8 = C_5^3$; $S_5^9 = \sigma C_5^4$; $S_5^{10} = E$

$$
S_{6}=\sigma_{h}C_{6}
$$

b. *n*-fold rotation + inversion, Rotary-inversion axis(I_n)

Rotation of Cn followed by inversion through the center of the axis

1 3 $I_3^1 = iC_3^1$ $I_3^2 = C_3^2$ $I_2 = C_2 + i$ $I_{\circ} = i$ $I_i = iC_i = i$ $I = i$ *h n* $=C_{2}$ + $=$ ι $=$ ι ι $=$ Ξ $3 - 3$ 2 1 $\sigma_{\rm z}$ $=$ $\sigma_{\rm \scriptscriptstyle 1}$ **1 n C C C** , $\mathbf X$ $\mathbf{A} = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}$ $\mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix}$

$$
I_3^1 = iC_3^1
$$
 $I_3^2 = C_3^2$ $I_3^3 = i$ $I_3^4 = C_3^1$ $I_3^5 = iC_3^2$ $I_3^6 = E$

Summary

Element Name **Operation**

- C_n
- σ
- *i* **Center of inversion**
- S_n **Improper rotation axis**

n-fold rotation Rotate by 360°**/n**

Mirror plane Reflection through a plane

> **Inversion through the center**

Rotation as Cn followed by reflection in perpendicular mirror plane

E identity Do nothing

2. Combination rules of symmetry elements

A. Combination of two axes of symmetry

The combination of two C_2 axes intersecting at angle of 2 π /2n, will create a ${\sf C}_{\sf n}$ axis at the point of intersection which is perpendicular to both the C_2 axes and there are nC₂ axes in the plane perpendicular to the C₂ axis.

 $C_n + C_2(\perp) \rightarrow nC_2(\perp)$

B. Combination of two planes of symmetry.

If two mirrors planes intersect at an angle of $2\pi/2$ n, there will be a C_n axis of order n on the line of intersection. Similarly, the combination of an axis C_n with a mirror plane parallel to and passing through the axis will produce n mirror planes intersecting at angles of 2 π /2n.

$$
C_n + \sigma_v \to n \sigma_v
$$

$$
C_2 + \sigma_v \Rightarrow 2\sigma_v
$$

$$
C_3 + \sigma_v \Rightarrow 3\sigma_v
$$

Ex. ${\sf H_2O}$, ${\sf NH_3}$

C. Combination of an even-order rotation axis with a mirror plane perpendicular to it.

Combination of an even-order rotation axis with a mirror plane perpendicular to it will generate a centre of symmetry at the point intersection.

> I I $\overline{}$

__

1

 $\overline{0}$

I $\overline{}$ $\overline{}$

 \setminus

1

 Ω

0

 \setminus

 \int

 $-1)$

 Ω

 Ω

 Ω

 \setminus

 \int

1

 Ω

 Ω

Each of the three operations $\sigma_{\mathsf{x}\mathsf{y}\mathsf{r}}$ C_{2n} and i is the product of the other two operations

$$
C_{2}
$$
\n
$$
C_{1}
$$
\n
$$
C_{2}
$$
\n
$$
C_{1}
$$
\n
$$
C_{2}
$$
\n
$$
C_{2}
$$
\n
$$
C_{1}
$$
\n
$$
C_{2}
$$
\n
$$
C_{2}
$$
\n
$$
C_{1}
$$
\n
$$
C_{2}
$$
\n
$$
C_{3}
$$
\n
$$
C_{3}
$$
\n
$$
C_{3}
$$
\n
$$
C_{3}
$$
\n
$$
C_{1}
$$
\n
$$
C_{2}
$$
\n
$$
C_{2}
$$
\n
$$
C_{1}
$$
\n
$$
C_{2}
$$
\n
$$
C_{1}
$$
\n
$$
C_{2}
$$
\n
$$
C_{1}
$$
\n
$$
C_{2}
$$

$$
\sigma_h C_{2m}^m = \sigma_h C_2 = i
$$

§**2 Groups and group multiplications**

- **1. Definition:** A mathematical group, $G = \{G, \cdot\},\$ consists of a set of elements *G* = {E, A,B,C,D,....}
- (a) **Closure**. The product of any two elements A and B in the group is another element in the group.
- (b) **Identity operation**. The set includes the identity operation E such that AE=EA=A for all the operations in the set.
- (c) **Associative rule**. If A, B, C are any three elements in the group then $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.
- (d) **Inversion**. For every element A in *G*, there is a unique element X in *G*, such that $X \cdot A = A \cdot X = E$. The element X is referred as the inverse of A and is denoted A-1.

Example: $NH₃$

symmetry elements:

 $(C_3^1 \cdot C_3^2) \cdot C_3^1 = C_3^1(C_3^2 \cdot C_3^1)$

$$
{\rm E}, {\rm C}^1_3, {\rm C}^2_3, \sigma, \sigma', \sigma''
$$

$$
C_3^1 \cdot C_3^2 = C_3^3 = E
$$
 $C_3^1 \cdot C_3^1 = C_3^2$ $C_3^2 \cdot C_3^2 = C_3^1$ **Closure.**
E **Identity or**

Identity operation.

Associative rule.

 $C_3^1 \cdot C_3^2 = E$

Therefore, these symmetry elements constitute a group, C_{3V}
Example: $G = \{E, C_3, C_3^2, \sigma_v(1), \sigma_v(2), \sigma_v(3)\}$ NH₃: C_{3V}

 $C_3 \sigma_v(1) = \sigma_v(3)$ $\sigma_v(1)C_3 = \sigma_v(3)$...

2. Group Multiplication

Its total symmetry elements: E, C₂¹, σ_{xz} σ_{yz}

Example: H_2O 2. Group Multiplication

Multiplication table of C_{2v}

Multiplication table of C_{2v}

(1). In each row and each column, each operation appears once and only once.

(2) We can identify smaller groups within the larger one. For example, $\{E, C_2\}$ is a group.

(3) The group order is the total number of the group

Example: NH₃

C3v

Its total symmetry elements: E, C_3^1 , C_3^2 , σ_v , σ_v' , σ_v''

Multiplication table of C_{3v}

Group Multiplication

2 3 1 3 \boldsymbol{C}_3^1

 $C_3^2 \cdot C_3^2 = C_3^1$ $C_3^1 \cdot C_3^2 = C_3^3 = E$

Group Multiplication

$$
\text{max}(\sigma_v \longrightarrow \text{max}(\sigma_v) \longrightarrow \text{max}(\sigma_v) \longrightarrow \text{max}(\sigma_v) \longrightarrow \text{max}(\sigma_v)
$$

 $C_3^1 \sigma_v = \sigma_v$ "

Group Multiplication

 σ_v ' $\sigma_v = C_3^2$

Multiplication table of C_{3v}

§3 Point groups, the symmetry classification of molecules

Point group:

All symmetry elements corresponding to operations have at least one common point unchanged.

The group C_1 **1. The groups** C_1 **,** C_i **, and** C_s

- A molecule belongs to the group C_1 if it has no element of symmetry other than the identity.
	- Example: **CBrClF**

The group C_i

- It belongs to C_i if it has the identity and inversion alone.
	- Example: meso-tartaric acid, HClBrC-CHClBr

The group C_s

• It belongs to C_s if it has the identity and a mirror plane alone.

 $N_3S_3CI_4O_2$

A molecule belongs to C_1 if it has only the identity **E**.

A molecule belongs to C_i if it has only the identity E and i.

A molecule belongs to C_s if it has only the identity E and a mirror plane.

The group C_n 2. The groups C_{n} , $C_{n\nu}$, C_{nh} and S_{n}

- A molecule belongs to the group C_n if it possess an **only** n-fold axes.
- Example: $\rm{H_2O_2}$

C3

 $C_2H_3Cl_3$

The group C_{nv}

• If in addition to a C_n axis it also has n vertical mirror planes σ_v , then it it belongs to the C_{nv} group.

The group C_{nh}

• Objects having a C_n axis and a horizontal **mirror plane belong to** C_{nh} **.**

 $\mathbf{C_{n}}$, $\mathbf{\sigma_{h}}$

The presence of a twofold axis and a horizontal mirror plane jointly imply the presence of a centre of inversion in the molecule.

The group S_n

• Objects having a S_n improper rotation axis belong to S_n .

Group $\mathsf{S}_\mathbb{1}$ =C $\mathsf{S}_\mathbb{S}$ ${\sf Group}\ {\sf S}_2$ =C $_{\sf i}$

3. The group D_n , D_{nh} , D_{nd} The group D_n A molecule that has an *n*-fold principle axis and *ⁿ* twofold axes perpendicular to C*n* belongs to D*n*.

The groups D_{nh}

A molecule with a Mirror plane perpendicular to a C_n axis, and with n two fold axes in the plane, belongs to the group D_{nh} . $\mathbf{D_{n}}$, $\boldsymbol{\sigma}$

h

D_{nh}

 D_{3h}

The group D_{nd}

• A molecule that has an *n*-fold principle axis and *ⁿ* twofold axes perpendicular to C_n belongs to D_{nd} if it posses *ⁿ* dihedral mirror planes.

 $\mathbf{D_{n}}$, $\mathbf{n}\boldsymbol{\sigma_{d}}$

D2d

4. High order point groups

- Molecules having three or more high symmetry elements may belong to one of the following:
	- T: $4 C_3$, $3 C_2$ $(T_h: +3\sigma_h)$ $(T_d: +3S_4)$
	- O: $4 C_3$, $3 C_4$ $(O_h: +3\sigma_h)$
	- I: $6 C_5$, $10 C_3$ $(I_h: +i)$

 $\rm T_d$ – - Species with tetrahedral symmetry

tetrahedral symmetry group

Icosahedral symmetry group

 O_h – - Species with octahedral symmetry (many metal complexes)

octahedral symmetry group

 I_h – - Icosahedral symmetry (Buckminsterful lerene, C_{60})

T: **4 C₃, 3 C₂** $(T_h: +3\sigma_h)$ $(T_d: +3S_4)$

Shapes corresponding to the point groups (a) T. The presence of the windmill-like structures reduces the symmetry of the object from Td.
Cubic groups

{E, 4C₃, 4C₃², 3C₂, I, 4S₆, 4S₆⁵, 3 σ_h }

Cubic groups

Shapes corresponding to the point groups (b) O. The presence of the windmill-like structures reduces the symmetry of the object from O_h . O: $4 C_3$, $3 C_4$ $(O_h: +3\sigma_h)$

Cubic groups

O

Cubic groups

 O_h

 $SF₆$

 C_8H_8 OsF₈

 O_h

Cubic groups

I group

B12H12(**with hydrogen omitted**)

 $\mathsf{C}_\mathsf{20}\mathsf{H}_\mathsf{20}$

Ih

{E, $12C_5$, $12C_5$ 2 , 20C $_{\rm 3}$, 15C $_{\rm 2}$, i, 12S $_{\rm 10}$, 12S $_{\rm 10}$ ³,20S₆,15σ}

C60, the bird-view from the 5-fold axis and 6-fold axis

§**4 Application of symmetry**

1. Chirality

A chiral molecule is a molecule that can not be superimposed on its mirror image

These molecules are:

 cannot be superimposed on its mirror image. a pair of **enantiomers** (left- and right-handed isomers) \triangleright does not possess an axis of improper rotation, S_n Ability to rotate the plane of polarized light (**Optical activity)**

 $\mathbf{S}_{\mathbf{n}}$ (**i**= \mathbf{S}_{2} ; σ)

Optical activity is the ability of a chiral molecule to rotate the plane of plane-polarized light.

Optical activity

Optically inactive: achiral molecule *or* **racemic mixture**- 50/50 mixture of two enantiomers

Optically pure: 100% of one enantiomer

Optical purity (enantiomeric excess) = percent of one enantiomer – percent of the other

> *e.g.*, 80% one enantiomer and 20% of the other $= 60\%$ e.e. or optical purity

A chiral molecule does not possess S_n **(i,** σ **)**

C n and D n may be chiral (no S nimproper axis)

2. Polarity, Dipole Moments and molecular symmetry

A **polar molecules** is one with a permanent electric dipole moment.

Dipole Moments

- are due to differences in electronegativity
- \blacksquare depend on the amount of charge and distance of separation
- \blacksquare in debyes (D), μ = 4.8 \times δ (electron charge) \times d (angstroms)

 For one proton and one electron separated by 100 pm, the dipole moment would be:

$$
\delta^+ \quad \mathsf{d} \quad \delta^-
$$

$$
\mu = (1.60 \times 10^{-19})(100 \times 10^{-12} m) \left(\frac{1D}{3.34 \times 10^{-30} C \cdot m}\right) = 4.80 D
$$

Bond Dipole Moments

- Individual covalent bonds are polar if the atoms being connected are of different electronegativities.
- *Example*: $CH₃Cl$
	- $-$ The C—H bonds are *nonpolar* since C and H have about the same electronegativity.
	- $-$ Since Cl is more electronegative than C, the C—CI bond is *polarized* so that the CI atom is slightly electron-rich (partial negative charge, δ) and the C atom is slightly electron-poor (partial positive charge, δ^+). This bond is a **polar** covalent bond (or just polar bond).

$$
\overset{\delta^+}{\underset{--}{\leftarrow}} \overset{\delta^-}{\underset{--}{\longrightarrow}}
$$

Molecular Dipole Moments

Depend on bond polarity and bond angles

•Vector sum of the bond dipole moments

Symmetric molecules may have zero net dipole --- $\rm CO_2$: O=C=O

•Lone pairs of electrons contribute to the dipole moment

Since CH₃Cl has a *tetrahedral* shape, with one polar bond and three nonpolar bonds, there is an overall molecular dipole in the molecule, pointing towards the Cl atom.

Molecular Dipole Moments

Molecular Dipole Moments

Polar and Nonpolar Molecules

Permanent Dipole Moments

(a) A permanent dipole moment can not exist if *inversion center* **is present. Only molecules belonging to** the groups $\mathbf{C_{n^{\prime}}}$, $\mathbf{C_{nv}}$ and $\mathbf{C_{s}}$ **may have an electric dipole moment**

(b) Dipole moment cannot be perpendicular to any mirror plane or C_n **.** (σ_h)

