What’s a chemical bond?
Chemical Bonding



Quantum mechanical theory for description of molecular
structures and chemical bondings

« Molecular Orbital (MO) Theory
a) Proposed by Hund, Mulliken, Lennard-Jones et al. in 1930s.
b) Further developments by Slater, Hiickel and Pople et al.
c) MO-based softwares are widely used nowaday, e.g., Gaussian

« VValence Bond (VB) Theory
a) Proposed by Heitler and London 1930s, further developments by
Pauling and Slater et al.
b) Programmed in later 1980s, €.g., latest development--XMVB!

* Density Functional Theory
a) Proposed by Kohn et al.
b) DFT-implemented QM softwares are widely used, e.g., Gaussian.



Slater Pauling




Chapter 4 The structure of diatomic molecules

§ 1 Treatment of variation method for the H,* ion

1. Shroedinger equation of H.,*
Born-Oppenheimer Approximation

€ or
" b
* The electrons are much lighter than the % \
A = B

nuclei.

 Nuclear motion is slow relative to the
electron motion.

The Hamiltonian operator
) 1 1 1 1 Where r, and 1, are related by:

H=——V2io———+
R r R rb:\/ra2+R2—2raRcos6’

a
Shroedinger equation of H,"

ﬁw:Ew




Molecular Orbital Theory H3
We could now solve: H(r,,R )y (r,R)=E,(R)y(r,R)

This 1s possible but tedious

H," can be solved exactly using confocal elliptical coordinates:

r r,

& = (r+ry)/R

M = (rrp)/R
¢ Is a rotation around z
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Welec = F(EM) (2m) 2 em?
where m=0, =1, =2, =3, ...

The associated quantum number is A. = orbital angular momentum
A =|m|

Each electronic level with m #0 1s doubly degenerate, 1.e. + |m|,-|m|

atoms: ¢ =0,1,2,... and the atomic orbitals are called: s,p.d, etc.

diatomics: A = 0,1,2, ... and the molecular orbitals are: o, «t, , etc.

A 0 1 ]2 |3 4 H,*: r,=2 Bohr
letterlc  |m (& |d |y E,=2.71eV




2. The Variation Theorem

For any well-behaved wavefunction ¢, the average energy
from the Hamiltonian of the system is always greater or close
to the exact ground state energy (E,) for that Hamiltonian,

<E>—M I_I¢O|T>E
[ppde O




Proof
¢(¢ 2 E,) its ground state (v, > E,)

=2, S V1 W, s ...consist of an
Hy = Ey. E > E, orthogonal n(?rmallzed set
. of wavefunctions
H ¢d
< E >= 'M - el
[4'gdz

I¢*I-i¢drzjzi: ci*wi*HZj: cjwjdrzzi: ci*zj: C,—I y Hy dr
:Z ZJ: cic; | V’i*Ej‘/’de:Z Z,: ciCE | vy de
Joigde=[3% Ci*Wi*Zjl By 7=2 Ci*Zjl ¢, vi'v,de
:Z Z,: C,C .0,
2. 2 J vividr Tl

Z Z CiC Z c;|’ = Eo

e =< E >=



Example: Devise a trial variation function for the particle In
a one-dimensional box of length I.

A simple function that has the
properties of the ground state
IS the parabolic function:

Q= X(| —X)  for 0<x <l

0 I
Kl
6m

* L 2 | ) d2 2 .
-[¢ HWT——%LGX_X )W(IX_X )dX—

IS

I¢*¢dr =J: x> (I = x)*dx =30

j¢ﬂ4¢drz 5h2 S h?

<E>= >
(g az’mI? gml?




3. Linear Variation Functions . — .
A hnear variation functlon

n 1s a linear combination of
p=cf +c,f,+...+Cc f = ZCJ fj n linearly independent
=1 functions f,, f,, ...T..

Based on this principle, the parameters are

regulated by the minimization routine so as <E>:j¢*F|¢dr>E
to obtain the wavefunction that corresponds I¢*¢df -
to the minimum energy. This is taken to be

the wavefunction that closely approximates & =< E >

the ground state.

adjusting the parameter, make S—g =0
C.



Example

j¢*ﬁ¢dr Sij :IWi*Wde:[Sij]*
[¢'pdz
j¢*¢df = J.(Cll/jl +Czl//2)*(C1l//1 +C,p,)dz

p=Cy, +Cy, &=
:IWindT = Sji

= | (C12'>V1*W1 + C1C2W1*W2 + CICZWZ*WI + 022‘//2*‘/”2)(1 T

= : (¢’w, v, +2C,C.w, v, +C w, w,)dr

=¢,’ +2¢,,S,, +¢,° (S; = _[ vy, dr=S,)

=¢,’S,, +2¢,C,S,, +C,°S,, (S,,=S,, =1

[¢ Agdz = [(cr, +ew,) A(cw, +cp,)de

= j (¢’w, Hy, +c,cy, Hy, +ccw, Hy, +¢,’w, Hy,)dr
=¢’H,, +2¢c,c,H,, +¢,"H,, (Hy=H; = [ v Hy dr)



2 2
— Cl H11+2CIC2H12+C2 H22 _ y

let & > :
Cl Sll + 2CIC2812 + C2 S22 X

make &= E,

O_a_g_lay_yax
oc, xaoc, X oc

1
= ;(2C1H11 + 2C2H12) _X—yz(zclsll + 2C2812)

2 2
¢, H,+2cc,H,+c,H

1 4 11 1~%21 112 22 22 (2C1811+202512)=O
C, S11 +2C1C2812 +C, Szz
(2c,H,, +2¢,H,,)-E(2¢,S,, +2¢,S,,) =0
(ClHn+C2H12)_E(C1811+C2812):O

(201H11 +202H12)_

(Hll_ESn)C1+(H12_E812)Cz =0 (D
Same as
0= 9¢

ocC,

(H21 - Eszl)cl + (sz - ESzz)Cz =0 (2)



seqular equation

made equation resolved(c,,c, #0)
H11_E811 H12_E812 _0
H21 - ESzl sz - ESzz

get E = get C,,C, = get ¢

The algebraic equation has 2 roots, E, and E,.

¢ =Cy, +Cy, +...+C Y,

H,-ES, H,-ES, .. H, —-ES,
H,-ES,, H,-ES,, .. H, —ES,

H, -ES, H,-ES, .. H_ —-ES_

The algebraic equation has n roots, which can be shown to be real.
Arranging these roots in order of increasing value: E,< E.<... <E .



* From the variation theorem, we know that the lowest value of root
W) 1s the upper bound for the system’s ground-state energy.
1 pp y g gy

E,.<W,

* Moreover, it can be proved that the linear variation method
provides upper bounds to the energies of the lowest n states of the
system.

E<W, E<W, ..., E,sW,
* We use the roots as approximations to the energies of the lowest
states.

* [f approximation to the energies of more states are wanted, we
add more functions f, to the trial function ¢.

 The addition of more functions f, can be shown to increase the
accuracy of the previously calculated energies.



3. The solution of

Note: we have as many linear combinations

as we have atomic orbitals

Trial function




¢ =C.W, +Cy,
seqular eguation
Haa_ESaa I_ab_ESab
Hba_ESba I_bb_ESbb
. i, has the same form as y,
(H,, —ES,.)" =(H,, —ES,,)’

H,, —ES,, =+(H,, —ES,)
it He—ES,=—(H, —ES,)
E — HotHy atp

1 1+S,, 1+ S
It H. —ES. =Hy —ESy,
Hp—Hyp _a-p

1-S,  1-S

=0




substituting E, to seqular equation

(Haa_Esaa)ca+(Hab_ESab)Cb =0 (1)
(Hba_ESba)Ca+(be_ESbb)Cb =0 (2)
Saa :Sbb :1

(H . Haa + Hab)ca +(Hab . Haa + Hab Sab)Cb :0

“1+S, 1+S,,
(Haa(1+5,) —(Ha + Hy))C, +(Hy (T+S,) —(Hpy +Hyp)S,)C, =0
(Haa(1+5,) —(Hy + Hyp))C, + (Hyy (T+S,) —(Hpy + Hyp)S,)C, =0
(HaaSy —Hap)Cy + (Hy —H.2 546, =0

C,—C, = 0 C, =C,

P, = Cla TGy, = Co(W + 1)



nomalization  condition _[ ¢ gdr=1

| Ccwa+w ) ey, +y)dr =1

| [elv +2¢ vy, +¢.y, dr =1
2¢.°(1+S,,) =1
]
*J200+S,,)
o
- J20+5S,)

C

) (Wa V)

substituting E, to seqular equation
c,+¢, =0 C, =—C,
9, =CW, +C, =C, (W, — V)

1

%= Aiosy)

(Wa - Wb)




1+S
a_
=
* 1=S
b= (.rw)
a_\/2(1+sab) Wa Wb

H1is

H1is



Overlap
Integral

Coulombic
Integral

H,. = [, Hydz
o lo. 1 1 1
2 r, L R
w1 1 1 1
H = ——V° - +
aa Iwa( - S
* 1 2 1
— ) v
J va 3 -
B[y Ly dr=E 4]
H R l//a rbl//a H
J =5.5%E
H,=E,+J~E, =«



Resonance integral

H, = .Wa*l'AIWde

. « 1 1 1 1
H, = Vet Dy dr
ab J l//a( 2 ra rb R)l//b




Sa :_[ Wa*Wde
H, =E,+J=E =«
Hab — EHSab_l_K :/B

Ea:Haa+Hab

1+S,,
Eb:Haa_Hab

1-S,_,
= _EH+J+EHSab+K_E +J+K
1 14+S,, " 148
EzzEH+‘j_;<




0.6

Experimental

Calculated

20"

10

H;

The calculated and
experimental molecular
potential energy curves
for a hydrogen
molecule-ion.

_I_
E =E, + ITK
(1+S)
E,=E, + Jols




Molecular Orbital Theory H42'

Region of _
constructive A representation of the

interference constructive interference

that occurs when two H 1s
’ orbitals overlap and form a
@.‘ bonding o orbital.

7




| +
Molecular Orbital Theory Hz

The electron density calculated
by forming the square of the
wavefunction.

Note the accumulation

of electron density in the
Internuclear region.

1 > 1

1

2
+ +2
20+5) % T 2148) " T Taats)

p() =



Molecular Orbital Theory

Region of
destructive
interference

@35

AN
Y

Os

H;

A representation of the
destructive interference

that occurs when two H1s
orbitals overlap and form an
antibonding o* orbital.

1
g J2(-S,)

(Wa—¥p)



Molecular Orbital Theory H+

The electron density calculated
by forming the square of the
wavefunction. Note that the
elimination of electron density
from the internuclear region.

1 2 1 ) 1

+ —2
2(1-8) 7 T201-8)"" T T2-5) "

p(D) =



Molecular Orbital Theory H+
2

2c*

A molecular orbital energy
level diagram for orbitals
constructed from the overlap

H1S of H1s orbitals; the separation
of the levels corresponds to
that found at the equilibrium
bond length.

H1is




§ 2 Molecular orbital theory and diatomic molecules

1. Molecular orbital (MO) theory

a. Every electron in a molecule 1s in an average potential field of
the nuclei and the other electrons.

The state of electron 1 1s described by the . wavefunction.

------- the one-electron wavefunction

0(12,..0) =, (D, (2).., ()
H=SH

N

H.w, = By,



b. The formation of molecular orbital (MO).

The MO may be approximated from the linear combination of
atomic orbitals (LCAO).

Three basic requirements in the formation of MO:

* The AOs should have comparable energy, have compatible
symmetry and be able to have maximum overlap.

08 ©

The building-up principle in molecules:

Pauli exclusion principle, the minimum energy
principle and Hund’s rule.



Why should the AOs should have comparable energy?
¢ — Ca';”a + Cbl//b

seqular equation
Haa - ESaa Hab - ESab _
Hba B ESba be - ESbb B

lf Haa — Eaﬂbe — EbﬂHab Z,B,Sab :O

E, =%[(Ea +Ey)—(E, —E,)? + 447 ]
E, = I(E, +E) (B, ~E,) +45°]

(Ey-E)>>(B| => E=E,, E,~E,

Ey=E — E=E.-| Bl E,=E, +| B

a




2. The characteristic distribution and classification of molecular
orbitals

a. o-orbital and o-bond

s s g _
s s a,
s
° (b) cYS

B @ - P - %
coNcol@OoNC Ol






2. The characteristic distribution and classification of molecular orbital

b. m-orbital and w-bond

i
3G

(e

T 2Py Mg 2Py

(pr)a ,'II “‘\ (2px)b
(2py)a \ K 2py)y

(f)

Ty2Px TPy



2. The characteristic distribution and classification of molecular orbital

c. o-orbital and 6-bond
Re,Cl;, Mo,Clg*
“Re: S2d°; Re3*: d4

R ]

(a) (b)



3. The structure of homonuclear diatomic
molecules

a. The ground-state electronic configurations



For oxygen and fluorine, 2p
and 2s are well separated.

0,: KK(0,)*(07,9)° (0 »,)*

(T0y,)* (T,

F,: KK(G, )2 (G, (G,

(T0y,)* (TT,)"*




Molecular Orbital Theory

The effect of interactions
between 2s and 2p.

At the start of the second
row Li-N, we have mixing
of 2s and 2p. The result is
that 16,* Is pushed down
In energy whereas 2c, Is
raised.

B,: KK(1o,)*(1c,)* (1)’

N,: KK(1o)*(1c,)* (1m,)*
(20,




Electronic configurations

A ah
_"_ “ + —ﬁ—-m \ _ﬂ_

~o N
~ ~
~
~ S
~
< ~
~ ~
SO
N
~o . \,
N %,
SO 5,
SO 5,
SoN
~
N
~
N
Q
D

2s-2p, mixing

(o ng)2
He,” 3 (Ggls)2 (Gu1s)'
Li, |6 [KK(lop)’
B, |10 [KK(loy)’(loy)’ (1m,)’
C, |12 [KK(lop)’(loy)’ (1my)*
N,” |13 [KK(loy)’ (16,) (1m,)* (20y)"
N, |14 |KK(lo,)’ (16,)’ (1m)* (20,)°
0,7 |15 [KK(0g9) (0u2s) (0gzp)” (Tuzp)’ (ezy)’
0, |16 [KK(0gps) (6u2s) (Ge2p)” (Tuzp)” (Tezp)’
Fr  [18  [KK(0gy) (0u) (Og2p)” (Tzp)” (mezp)’




3. The structure of homonuclear diatomic molecules

b. The bond order

Bond orders :

1 *
b==(n-n
HUBLD

n. Electrons in bonding orbitals

n*. Electrons in antibonding orbitals




Diatomic molecules k.

Molecule

Bond Order

Bond Length (A)

Bond Energy (kJ/mol)

Diamagnetic (d)/ Paramagnetic (p)




3. The structure of homonuclear diatomic molecules

c. The molecular spectroscopy - term



Molecular Orbital Theory Diatomics Term symbols

Molecule Configuration Term symbol

+ 1 2+
H5 (Iog) 2g

Spin multiplicity 25T +1
Reflection

L-|-Z: O 1 2 . SYM(L,)
> II A Parity



Term

symbols

Molecular Orbital Theory@Diatomics

Molecule Configuration Term symbol
2 1+
H, (jﬁg) 29 OQ ——
= 2 1 2.+ 2S-2s 20
H2 (log)~(oy) 2
OO ==~
He, (I5g)? (Io,) Isg  2s+25 %9
: 2 2 2 1+ OO
Li (log)“(oy)“(20¢) 2g B1-1s oy
CO -
Bey  (Iog)?(loy)?(20g)°(20y,)° 5 T 1o,

Spin multiplicity

Reflection

Parity




Molecular Orbital Theory@Diatomics

Term symbols

Molecule Configuration Term symbol

3y— 1 v+
B (1my) g Ay 2g
C 4 1a+
2 (Imy) 29 oo —H 304
NS (3oq) (Amy)* s DO

Reflection

Parity



Molecular Orbital Theory@Diatomics

Term symbols

Molecule Configuration Term symbol DQOQBTcu
N> (369)2(175u)4(1ng)1 2H9 X 8
3g- 1 I+
02 (369)2(17'511)4(]-“@])2 zg Ag Zg @
S @@%%
- +
2 (3og)"(Iny) " (Ing) 2 gg Iy
SO +—

Spin multiplicity
D T+1
Ly,: 0 1 2 SYM(L,)

> IT A

Reflection

Parity



d
7\,1:1 7\,2
A=0




Molecular-Orbital Configurations:

KK <20,<26,* <30, <1In, <lm*<3c,*2p

MO Nomenclature for Homonuclear Diatomic Molecules

o ls o, *ls o,2s c,*2s mw?2p G,2p m,*2p  6,*2p

lcg lo, 2(‘5g 20, I, 3Gg lTEg 30,




Properties of Homonuclear Diatomic Molecules in their Ground States

Species Term BO De (eV) Re (A)

H,* 23 ¢ 2.8 1.06
H, I, 4.75 0.742
He," 25, + 3 1.08
He, 1y g+ — —
Li, I, 1.1 2.67

Be, 12g+ — —

B, T, () 2.9 1.59
N,* 23+ . 8.9 1.12
N, 15, ¢ 9.9 1.10

2Hg : 6.8 1.12

32g' 5.2 1.21

I3+ 1.6 1.42

Iy + _ S
g




4. The structure of heteronuclear
diatomic molecules



MO Theory for Heteronuclear Diatomics

« MO'’s will no longer contain equal contributions from each AO.

— AOQO'’s interact 1f symmetries are compatible.

— AOQO's interact 1f energies are close.

— No interaction will occur 1f energies are too far apart. A
nonbonding orbital will form.

¥, makes a
greater
contribution to
the Y0

Energy

"b*MO
Y, makes a greater
contribution to the
Yy Yo
"bMO
XY Y



Example: HF

The F (2s) 1s much lower in
energy than the H (1s) so they do
not mix.

— The F (2s) orbital makes a
non-bonding MO.

— We certainly don'’t have to
worry about the F (1s)
because is MUCH lower in
energy.

The H (1s) and F (2p)’s are close
in energy and do interact.

— The 2px and 2py don'’t have
the appropriate symmetry
though and therefore form
nonbonding MO'S

— Only the 2pz and 1s mix.

Energy

)}
{4

ls
Non-bonding

A | 4|

Ty Ty -

Non-bonding
et
H HF F

K(20)? (3c6)? (1m)*



Heterogeneous diatomic molecules, HX

MO diagram for HF Electronic configurations

f

£

|
i
f

4o

LiH @ 4 K(20)?

Mainly H i&h = 7
Hls -

K(26)*(30)!

K(206)? (36)* (1n)!

K(26)? (30)* (1)’

Mainly F

Ki2e)y Qo) (1a)

K(20)?(30)* (1n)*




Isoelectronic rule:

The MO’s bond formation
and electronic configurations
are similar among the
1soelectronic diatomic
molecules.

CO is isoelectronic with N.,.

KK((30)? (40)% (1T)* (50)?

_OU
( LS
*-m
. ,O -.451‘ .\*w:-.-. ..
" ,. ~ l’ -. -)
',./ g . \}. ..‘pv. ..]J
- ” » - -
” L »
’ T‘ 't" / o’/*i.
y . . [ 4 -~ J')
! —l)‘ . ':l, \‘ v |
‘ “\‘ ) | \‘ - iy Ll
"_\. “ . ’ " ,”
. | N .ﬁ - - ‘h "0 '/', ¢ 0"
ap \‘\ N ."-. . e’ v
¥ D - - felt
" " e ’/ I
L - .o
A | t B} ' i ‘
. /
" g "

o"-

electronic configurations of NO



Molecule electrons

LiH 4
BeH 5
CH 7
NH 8
OH 9
HF 10

BeO , BN 12

CN, BeF 13
CO 14
NO 15

electronic configuration
K(206)?

K(26)2 (30)!
K(26)2 (30)? (1m)!
K(26)2 (36)? (1m)?
K(26)2 (30) (1)’
K(26)2 (30)? (1m)*

KK(36) (40)? (1m)*
KK(30)2 (40) (1m)* (50)!
KK(36)? (4c)2 (1m)* (562

KK (36)? (46)? (1n)* (506)* 2m)!

term
12+

22+

11

32—

11

12+

12+

22+

12+

11



% 3 Valence bond(VB) theory for the hydrogen molecule and
the comparison VB theory with Molecular Orbital theory(MO)

In valence bond(VB) theory we localized one
electron to each.

The Heitler-London treatment:
f,=A(1)B(2) f,=A(2)B(1)
The trial variation function:
Y=c,f,+ c,f, =c,;A(1)B(2) +c,A(2)B(1)
We have the valence bond wavefunction
Y(1,2)ys = N[A(D)B(2)+AR2)B(D)]x[a(1)5(2) - (D (2)]




In molecular orbital (MO) theory each electron
moves over the whole molecule.

Both electrons can be on the same nuclei

The unnormalized LCAO-MO wave function for the H2
ground state is:

F(1,2)y0 = N[A(D)+ BDI[AR)+B(2)]x[a(1) £(2) - f(Da(2)]

A(DAQ2)+B(1)B(2) + A()B(2)+ A(2)B(1)
HH* HH- b 4

—
Covalent terms




Comparison of MO and VB theories

VB Theory

Separate atoms are brought
together to form molecules.

The electrons in the molecule pair
to accumulate density in the
internuclear region.

The accumulated electron density
“holds” the molecule together.

Electrons are localized (belong to
specific bonds).

Hybridization of atomic orbitals

Basis of Lewis structures,
resonance, and hybridization.

Poor theory for obtaining
quantitative bond dissocation
energies. (have been improved)

Good theory for predicting
molecular structure.

Molecular orbital theory

Molecular orbitals are formed
by the overlap and interaction
of atomic orbitals.

Electrons then fill the molecular
orbitals according to the aufbau
principle.

Electrons are delocalized (don't
belong to particular bonds, but
are spread throughout the
molecule).

Can give accurate bond
dissociation energies if the
model combines enough atomic
orbitals to form molecular
orbitals.



